
Performance Evaluation of View-Oriented Parallel
Programming

Z. Huang†, M. Purvis‡, P. Werstein†
†Department of Computer Science

‡Department of Information Science
University of Otago, Dunedin, New Zealand

Email:hzy@cs.otago.ac.nz, mpurvis@infoscience.otago.ac.nz, werstein@cs.otago.ac.nz

Abstract

This paper evaluates the performance of a novel
View-Oriented Parallel Programming style for parallel
programming on cluster computers. View-Oriented
Parallel Programming is based on Distributed Shared
Memory which is friendly and easy for programmers to
use. It requires the programmer to divide shared data
into views according to the memory access pattern of
the parallel algorithm. One of the advantages of this
programming style is that it offers the performance po-
tential for the underlying Distributed Shared Memory
system to optimize consistency maintenance. Also it
allows the programmer to participate in performance
optimization of a program through wise partitioning
of the shared data into views. Experimental results
demonstrate a significant performance gain of the
programs based on the View-Oriented Parallel Pro-
gramming style.

Key Words: Distributed Shared Memory, View-based
Consistency, View-Oriented Parallel Programming,
Cluster Computing

1 Introduction

A Distributed Shared Memory (DSM) system can pro-
vide application programmers the illusion of shared
memory on top of message-passing distributed systems,
which facilitates the task of parallel programming in
distributed systems. However, programs using DSM
are normally not as efficient as those using the Mes-
sage Passing Interface (MPI) [12]. The reason is that
message passing is part of the design of a MPI program
and the programmer can finely tune the performance of
the program by reducing the unnecessary message pass-
ing. As we know, message passing is a significant cost

for applications running on distributed systems, which
is also true for DSM programs. Since consistency main-
tenance for DSM [3, 10, 8] deals with the consistency
of the whole shared memory space, there are many un-
necessary messages incurred in DSM systems. Further-
more, the programmer cannot help reduce those mes-
sages when designing a DSM program.

Traditionally DSM programs are required to be data
race free (DRF) using system provided synchronization
primitives such aslock acquire, lock release, andbar-
rier. If a DSM program has no data race through us-
ing those primitives, it is called aproperly-labelledpro-
gram [3]. However, properly-labelled DRF programs
do not facilitate optimization such as data selection [8],
which only updates part of the shared memory in con-
sistency maintenance in DSM. Since DRF-oriented pro-
gramming focuses on mutual exclusion and synchro-
nization rather than data allocation, there is no com-
munication channel in those programs for expert pro-
grammers to interact with the DSM system in terms of
performance tuning. As a matter of fact, it is the opti-
mal data allocation which can improve the performance
of DSM applications.

To help DSM optimize its performance as well as to
allow programmers to participate in performance tun-
ing such as optimization of data allocation, we propose
a novel View-Oriented Parallel Programming (VOPP)
style for DSM applications.

The rest of this paper is organised as follows. Sec-
tion 2 briefly describes the VOPP programming style.
Section 3 discusses possible optimizations when a
VOPP program is created or converted from an exist-
ing program. Section 4 compares VOPP with related
work. Section 5 presents and evaluates the performance
results of several applications. Finally, our future work
on VOPP is suggested in Section 6.



2 View-Oriented Parallel Pro-
gramming (VOPP)

A view is a concept used to maintain consistency in
distributed shared memory. It consists of data ob-
jects that require consistency maintenance as a whole
body. Views are defined implicitly by the programmer
in his/her mind or algorithm, but are explicitly indi-
cated through primitives such asacquireview and re-
leaseview. Acquireviewmeans acquiring exclusive ac-
cess to a view, whilereleaseview means having fin-
ished the access. However,acquireview cannot be
called in a nested style. For read-only accesses,ac-
quire RviewandreleaseRvieware provided, which can
be called in a nested style. By using these primitives,
the focus of the programming is on accessing shared
objects (views) rather than synchronization and mutual
exclusion.

The programmer should divide the shared data into
views according to the nature of the parallel algorithm
and its memory access pattern. Views must not overlap
each other. The views are decided in the programmer’s
mind or algorithm. Once decided, they must be kept
unchanged throughout the whole program. The view
primitives must be used when a view is accessed, no
matter if there is any data race or not in the parallel pro-
gram. Interested readers may refer to [7, 6] for more
details about VOPP and program examples.

In summary, VOPP has the following features:

• The VOPP style allows programmers to participate
in performance optimization of programs through
wise partitioning of shared objects (i.e. data allo-
cation) into views and wise use of view primitives.
The focus of VOPP is shifted more towards shared
data (e.g. data partitioning and allocation), rather
than synchronization and mutual exclusion.

• VOPP does not place any extra burden on pro-
grammers since the partitioning of shared objects
is an implicit task in parallel programming. VOPP
just makes the task explicit, which renders parallel
programming less error-prone in handling shared
data.

• VOPP offers a large potential for efficient imple-
mentations of DSM systems. When a view primi-
tive such asacquire view is called, only the data
objects associated with the related view need to
be updated. An optimal consistency maintenance
protocol has been proposed based on this simplic-
ity [5].

To support VOPP, a View-based Consistency (VC)
model has been proposed and efficiently imple-

mented [7, 5]. In this model, a view is updated when a
processor callsacquireviewor acquireRviewto access
the view. Since a processor will modify only one view
betweenacquireview and releaseview, which should
be guaranteed by the programmer, we are certain that
the data objects modified betweenacquireviewandre-
leaseviewbelong to that view and thus we only update
those data objects when the view is accessed later. In
this way, the amount of data traffic for DSM consis-
tency in the cluster network can be reduced and thus the
VC model can be implemented optimally [5]. The Se-
quential Consistency (SC) [11] of VOPP programs can
also be guaranteed by the VC model, which has been
proved in [7].

3 Optimizations in VOPP

Traditional DSM programs need to be converted into
VOPP programs before being run on the VC model.
The applications we have converted include Integer Sort
(IS), Gauss, Successive Over-Relaxation (SOR), and
Neural network (NN). These programs are used in our
performance evaluation in Section 5.

IS ranks an unsorted sequence ofN keys. The rank
of a key in a sequence is the index valuei that the key
would have if the sequence of keys were sorted. All the
keys are integers in the range [0,Bmax], and the method
used is bucket sort. The memory access pattern is very
similar to the pattern of our sum example in Section 2.
Gauss implements the Gauss Elimination algorithm in
parallel. Multiple processors process a matrix follow-
ing the Gaussian Elimination steps. SOR uses a sim-
ple iterative relaxation algorithm. The input is a two-
dimensional grid. During each iteration, every matrix
element is updated to a function of the values of neigh-
boring elements. NN trains a back-propagation neural
network in parallel using a training data set. After each
epoch, the errors of the weights are gathered from each
processor and the weights of the neural network are ad-
justed before the next epoch. The training is repeated
until the neural network converges.

The task of conversion includes identifying exclu-
sive views and inserting view primitives. During the
conversion, the applications have been optimized using
the following tips.

3.1 Local buffer for infrequently-shared
or read-only data

In traditional DSM programs, shared data is accessed
directly from the shared memory, no matter how fre-
quently it is shared. Even some read-only data is put



into the shared memory. This generous use of shared
memory may unnecessarily cause the false sharing ef-
fect [8], which results from two or more processors ac-
cessing different data objects in the same page of DSM
and unnecessary memory consistency maintenance. For
some applications such as Gauss, shared data is read in
by individual processors and is accessed by the same
processor until the end of the program when final re-
sult has to be printed out. When we convert Gauss into
the VOPP program, local buffers are used to keep the
infrequently-shared data during processing. The shared
data is divided into views for individual processors and
each processor reads its view into a local buffer. The
processing on the shared data is carried out on the local
buffers by the processors. After the processing is fin-
ished, the data in the local buffers is copied back into
the shared memory using view primitives. The pseudo-
code is shown below.

acquire_view(proc_id);
copy from the view to loc_buffer;
release_view(proc_id);

for(i=0;i<max_iterations;i++){
process data in loc_buffer;

}
acquire_view(proc_id);
copy from loc_buffer to the view;
release_view(proc_id);

barrier(0);
if(proc_id==0){

for(j=0;j<nprocs;j++)
acquire_Rview(j);

read and print data in all views;
for(j=0;j<nprocs;j++)

release_Rview(j);
}
barrier(0);

We also optimized the NN application in this man-
ner. The application trains a back-propagation neu-
ral network in parallel. The training data set is read-
only and initially read into the shared memory for pro-
gramming convenience. We divide the training data set
evenly intonprocsviews, wherenprocsis the number
of processors. The views are copied into local buffers
for later processing. The pseudo-code is shown below.

acquire_view(proc_id);
copy from the view to loc_buffer;
release_view(proc_id);

while (not trained){

train the network with data
in loc_buffer;

barrier(0);
change the weights of the network;
check the errors from the target;

}

By using the local buffers, the applications can avoid
false sharing effect. Of course, there is an overhead
of copying between the shared memory and the local
buffers. If the processing on the local buffers is sus-
tained for relatively longer time, the overhead is negli-
gible and there is a performance gain due to the removal
of the false sharing effect.

Even though the above optimizations can be done in
traditional DSM programs, they are enforced in VOPP.
Since acquireviews cannot be nested, infrequently-
shared data have to be moved to local buffers so that
frequently-shared data can be accessed at the same time.

3.2 Removal of barriers

In VOPP, barriers are only used for synchronization
among processors and have nothing to do with ac-
cess exclusion and consistency maintenance of DSM.
The consistency maintenance and access exclusion are
achieved automatically by the view primitives. In some
traditional DSM programs, barriers are used for access
exclusion instead of synchronization, in which case bar-
riers can be removed in VOPP programs. Integer Sort
(IS) has such a barrier that can be moved from inside a
loop to outside.

3.3 Shared memory for frequently-shared
data

Frequently-shared data is often mixed with infrequently
shared data in traditional DSM programs. For exam-
ple, the SOR program processes a matrix with multiple
processors, each of which gets a portion of the matrix.
Each processor works on its portion most of the time,
but needs the border elements between portions from
the portion of its neighbour processors after every itera-
tion. Each portion of the matrix is not frequently shared
except the border elements. However, the SOR program
allocates a block of shared memory to the whole matrix
and multiple processors directly access the shared mem-
ory, which causes the false sharing effect. The pseudo-
code of the traditional SOR program is shown below.

processor 0 reads in the matrix
into the shared memory;

barrier(0);
//executed by each processor;



for(i=0;i<max_iterations;i++){
read border elements

from its neighbor’s share;
update its share of the matrix

with the border elements;
barrier(0);

}
read and print out the whole matrix;

In VOPP, we allocate a local buffer for the portion of
the matrix of each processor, since it is not frequently
shared. We use separate views for those border ele-
ments which are frequently shared. At the end of each
iteration, border elements of the views are updated by
copying them from the local buffers to their respective
views. At the beginning of the next iteration, the bor-
der elements in the views are read by the corresponding
processors. In this way, only the border elements of the
views are passed between processors through the clus-
ter network instead of other irrelevant elements of the
same page. The pseudo-code is as below.

processor 0 reads in the matrix
into the shared memory;

barrier(0);
acquire_view(proc_id);
read its share of the matrix

into a local buffer;
release_view(proc_id);
bdv = nprocs;
for(i=0;i<max_iterations;i++){

acquire_view(bdv+prev_pid);
read border elements from

the previous processor;
release_view(bdv+prev_pid);

acquire_view(bdv+next_pid);
read border elements from

the next processor;
release_view(bdv+next_pid);

update the local buffer
with the border elements;

acquire_view(bdv+proc_id);
update the border elements of

the current processor;
release_view(bdv+proc_id);

barrier(0);
}
if(proc_id==0){

for(j=0;j<nprocs;j++)
acquire_Rview(j);

read and print the whole matrix;

for(j=0;j<nprocs;j++)
release_Rview(j);

}
barrier(0);

The above optimization is again enforced by VOPP
so that frequently-shared data can be accessed at the
same time as the infrequently-shared data is accessed.
Likewise there is an overhead of copying between the
shared memory and the local buffers. However the over-
head is negligible if the processing on the local buffers
is sustained for relatively long time. Another overhead
is the view primitives called in the loop, which will re-
sult in more messages than the traditional DSM pro-
gram. However, there is a big performance difference
between the barriers in VOPP and those in traditional
programs. Barriers in VOPP simply synchronize the
processors without any consistency maintenance, while
barriers in traditional programs have to maintain the
consistency of the shared memory. Maintaining con-
sistency in barriers is a centralized way for consistency
maintenance and becomes time-consuming when the
number of processors increases. Even though there are
many view primitives in the above VOPP program, con-
sistency maintenance is optimally achieved by them in
a distributed way. Therefore, overall the above VOPP
program will still perform better than its traditional ver-
sion, especially when the number of processors is large.

3.4 acquireRviewfor read-only data

Read-only views can be accessed withacquire Rview

and release Rview in VOPP. Programmers can use
them to improve the performance of VOPP programs,
since multiple read-only accesses to the same view
can be granted simultaneously, so that the waiting
time for acquiring access to read-only views is very
small. Programmers can use them to replace barri-
ers and read/write view primitives (acquire view and
release view) wherever possible to optimise VOPP
programs. In NN, a global weight matrix is shared by
all processors. After each iteration, the weight matrix is
updated by every processor. At the beginning of each it-
eration, every processor needs to read the weight matrix
to update the neural network. We useacquire Rview

to enable every processor to read the matrix concur-
rently rather than sequentially.

3.5 mergeviewsfor merging views

When there is a need to rearrange the views at some
stage in a program,mergeviewscan be used to update
all views of every processor so that each processor has
an up to date copy of the whole shared memory. This



operation is expensive but convenient for programmers.
However, we have not seen any program that has such a
need so far.

3.6 Basic rule of thumb

The following basic rule of thumb can help VOPP pro-
grammers optimize view partitioning and parallel algo-
rithms proactively: the more views are acquired, the
more messages there are in the system; and the larger
a view is, the more data traffic is caused in the system
when the view is acquired.

4 Comparison with related work

VOPP is different from the programming style of Entry
Consistency in terms of the association between data
objects and views (or locks). Entry Consistency [2] re-
quires the programmer to explicitly associate data ob-
jects with locks and barriers in programs, while VOPP
only requires the programmer to implicitly associate
data objects with views (in the programmer’s mind).
The actual association is achieved in view detection in
the implementation of the VC model. Since the asso-
ciation is achieved dynamically, VOPP is more flexible
than the programming style of Entry Consistency.

VOPP is also different from the programming style
of Scope Consistency (ScC) in terms of the definition
of the concepts of view and scope. Once determined
by the programmer, views in VOPP are non-overlapped
and constant throughout a program, while scopes in ScC
can be overlapped and are merged into a global scope
at barriers. Programs based on ScC are extended from
the traditional DSM programs, i.e., lock primitives are
normally used in programs while scope primitives such
as openscopeare used only when required by mem-
ory consistency. However, in contrast to the traditional
DSM programs, the focus of VOPP is shifted towards
shared data (views) rather than synchronization and mu-
tual exclusion.

VOPP is more convenient and easier for program-
mers than the message-passing programming style such
as MPI [4], since VOPP is still based on the concept
of shared memory (except the consistency of the shared
memory is maintained according to views). Moreover,
VOPP provides experienced programmers an opportu-
nity to fine-tune the performance of their programs by
carefully dividing the shared memory into views. Parti-
tioning of shared data into views becomes part of the de-
sign of a parallel algorithm in VOPP. This approach of-
fers the potential for programmers to make VOPP pro-
grams perform as well as MPI programs, which is the
ultimate goal of our VOPP-based DSM system.

5 Experimental evaluation

In this section, we present our experimental results
of several applications running on the following three
DSM implementations:LRCd, V Cd andV Csd.

• LRCd is a diff-based implementation of the Lazy
Release Consistency (LRC) model [10]. It is
the original implementation of LRC in Tread-
Marks [1], which uses diffs to represent modifi-
cations of a page.

• V Cd is our implementation of VC which uses diffs
to represent modifications of a page. It uses the
same implementation techniques (e.g. the invali-
dation protocol) as theLRCd.

• V Csd is our implementation of VC based on a diff
integration scheme [5], which uses a single diff to
represent modifications of a page and piggy-backs
diffs of a view on the view acquiring message. It is
an optimal implementation of VC and renders bet-
ter performance for applications than other DSM
implementations.

SinceV Cd andLRCd use the same implementation
techniques, the performance advantage of VOPP over
traditional DSM programs can be demonstrated by run-
ning applications on these two implementations. The
overall performance advantage of VOPP (including the
potential for an optimal implementation) can be demon-
strated by comparingV Csd with LRCd.

All tests are carried out on our cluster computer
called Godzilla. The cluster consists of 32 PCs running
Linux 2.4, which are connected by a N-way 100 Mbps
Ethernet switch. Each of the PCs has a 350 MHz pro-
cessor and 192 Mbytes of memory. The page size of the
virtual memory is 4 KB. Though our processors are rel-
atively slow, a cluster with faster processors can more
favorably demonstrate the advantage of the VC model.
The reason is that VC significantly reduces data traffic
of the network which is the bottle neck of a cluster with
faster processors.

The applications used in our tests include Integer
Sort (IS), Gauss, Successive Over-Relaxation (SOR),
and Neural network (NN).

5.1 Integer Sort (IS)

The problem size of IS in our tests is (2
25 × 2

15, 40).
Table 1 shows the statistics of IS running on 16 proces-
sors, which can typically demonstrate the performance
of our applications.



LRCd V Cd V Csd

Time (Sec.) 78.4 53.4 25.8
Barriers 682 682 682
Acquires 0 20,479 20,479

Data (GByte) 1.236 1.279 0.174
Num. Msg 123,994 180,207 80,387

Diff Requests 38270 38,398 0
Barrier Time (usec.) 34,492 5467 2211

Rexmit 114 14 0

Table 1: Statistics of IS on 16 processors

In the table,Barriers is the number of barriers called
in the program;Acquiresis the number of lock/view
acquiring messages;Data is the total amount of data
transmitted;Num. Msgis the total number of mes-
sages;Diff Requestsis the number of diff requests; and
Barrier Timeis the average time spent on barriers; and
Rexmitis the number of messages retransmitted. From
the statistics, we find the number of messages and the
amount of data transmitted inV Cd are more than in
LRCd, howeverV Cd is faster thanLRCd. The reason
is two-fold. First, the barriers inLRCd need to maintain
consistency while those ones inV Cd do not. The con-
sistency maintenance of barriers inLRCd is normally
time-consuming and centralized at one processor which
can be a bottleneck. The consistency maintenance in
V Cd is distributed among the processors through the
view primitives. From the table, the average barrier
time in LRCd is 34,492 microseconds, while the av-
erage barrier time inV Cd is 5467 microseconds. Sec-
ond,LRCd has more message loss thanV Cd accord-
ing to the number of retransmissions (Rexmit in the
table).LRCd has 114 retransmissions whileV Cd only
has 14 retransmissions. One message retransmission re-
sults in about 1 second waiting time. The above statis-
tics demonstrate the distribution of data traffic in VOPP
programs can help reduce message retransmissions and
improve the performance of the VOPP programs. The
table also shows the optimal implementationV Csd has
greatly reduced the amount of data and number of mes-
sages in the cluster network.

We have two VOPP versions of IS: one uses the same
number of barriers as the original version (whose statis-
tics have been shown above), and the other moves the
barrier from inside the loop to outside (as we mentioned
in Section 3.2). Table 2 shows the statistics of IS with
fewer barriers.

Comparing Table 2 with Table 1, it is not surprising
to find that the VOPP version of IS with fewer barri-
ers is significantly faster than its counterpart with more
barriers.

V Cd V Csd

Time (Sec.) 49.6 24.2
Barriers 122 122
Acquires 20,479 20,479

Data (GByte) 1.278 0.173
Num. Msg 163,420 63,586

Diff Requests 38,398 0
Barrier Time (usec.) 9891 5540

Rexmit 14 0

Table 2: Statistics of IS with fewer barriers on 16 pro-
cessors

Table 3 shows the speedups of IS running on 2, 4, 8,
16, 24, and 32 processors. From the table we find the
speedups ofV Csd are significantly better than those of
LRCd. When the barrier is moved to outside the loop
(refer to the rowV Csdlb) the speedups are further im-
proved, especially when the number of processors be-
comes large.

2-p 4-p 8-p 16-p 24-p 32-p
LRCd 2 3.67 5.07 3.66 2.38 1.70
V Csd 2 3.81 6.88 11.12 12.58 12.16

V Csdlb 2 3.8 6.93 11.81 15.01 16.04

Table 3: Speedup of IS onLRCd andV Csd

5.2 Gauss

The matrix size of Gauss is2048 × 2048 and the num-
ber of iterations is 1024 in our tests. The originalGauss
program has the false sharing effect. The VOPP version
has significantly improved the performance by remov-
ing the false sharing effect with local buffers. Table 4
shows the number of diff requests inV Cd is signifi-
cantly smaller than that ofLRCd due to the removal of
the false sharing effect.

LRCd V Cd V Csd

Time (Sec.) 38.7 13.2 10.2
Barriers 1027 1028 1028
Acquires 0 17330 17295

Data (MByte) 255 21 20
Num. Msg 184517 119346 88521

Diff Requests 44145 15360 0
Barrier Time (usec.) 7080 3586 3610

Table 4: Statistics of Gauss on 16 processors

Even though there is an overhead for copying data
between the shared memory and the local buffers (as



mentioned in Section 3.1), there is a significant advan-
tage by processing the data in the local buffers instead
of in the shared memory. Due to the use of local buffers
for infrequently-shared data, the work for consistency
maintenance (e.g. diff requests) is greatly reduced and
accordingly the amount of data and the number of mes-
sages are significantly reduced (refer to the rowsData

andNum.Msg in Table 4).
Table 5 shows the speedups ofLRCd and V Csd.

The speedups ofV Csd is really impressive compared
with those ofLRCd.

2-p 4-p 8-p 16-p 24-p 32-p
LRCd 1.9 3.08 3.5 2.5 1.84 1.44
V Csd 1.98 3.75 6.55 9.42 9.13 8.3

Table 5: Speedup of Gauss onLRCd andV Csd

5.3 Successive Over-Relaxation (SOR)

SORprocesses a matrix with size4000 × 4000 and the
number of iterations is 50 in our tests. Similar toGauss,
SOR has infrequently-shared data which mixes with
frequently-shared data. The VOPP version uses local
buffers for those infrequently-shared data to reduce the
false sharing effect. Furthermore, it uses shared mem-
ory (a set of views) for those frequently-shared data
such as the border elements. Due to the wise allocation
of shared memory and local buffers, the amount of data
transferred in the cluster network is very small and ac-
cordingly the VOPP program performs better than the
original SORprogram. Table 6 shows the amount of
data transferred inLRCd is 65.57 Megabytes while the
amount inV Cd is reduced to 2.99 Megabytes. The
number of messages inV Cd is also reduced.

LRCd V Cd V Csd

Time (Sec.) 11.2 4.3 4.12
Barriers 102 102 102
Acquires 0 6030 6030

Data (MByte) 65.57 2.99 3.37
Num. Msg 45,471 33,144 21,152

Diff Requests 5907 5996 0
Barrier Time (usec.) 139,100 3738 3483

Table 6: Statistics of SOR on 16 processors

Another factor contributing to the better perfor-
mance of the VOPP program is faster barrier imple-
mentation in VC (as mentioned in Section 3.3). From
Table 6, the average barrier time inV Cd is 3738 mi-
croseconds, while the barrier time inLRCd is 139,100

microseconds.
Table 7 shows that the speedups of the VOPP pro-

gram running onV Csd is greatly improved compared
with the original program running onLRCd.

2-p 4-p 8-p 16-p 24-p 32-p
LRCd 1.65 2.67 3.7 4.45 4.47 4.33
V Csd 1.98 3.81 6.96 11.43 14.1 14.75

Table 7: Speedup of SOR onLRCd andV Csd

5.4 Neural Network (NN)

The size of the neural network inNN is 9 × 40 × 1 and
the number of epochs taken for the training is 235. The
VOPP version ofNNuses local buffers for infrequently-
shared data andacquireRviewfor read-only data. The
acquireRviewfor read-only data is very important for
the VOPP program. Without it the major part of the
VOPP program would run sequentially. Table 8 shows
VOPP itself does not demonstrate any performance ad-
vantage inNN sinceV Cd sends more messages and
data thanLRCd due to more view primitives used in
the VOPP program. ThusV Cd is slower thanLRCd.
However, the performance potential offered by VOPP to
DSM implementation becomes larger when more view
primitives are used. Table 8 showsV Csd performs sig-
nificantly better thanLRCd. The number of messages
and the amount of data transferred in the cluster net-
work are greatly reduced inV Csd due to diff integration
and diff piggy-backing.

LRCd V Cd V Csd

Time (Sec.) 114 119.4 54.07
Barriers 473 473 473
Acquires 7520 22,371 22,371

Data (MByte) 335 376 64.7
Num. Msg 101,919 161,400 81,590

Diff Requests 31,228 39,900 0
Barrier Time (usec.) 122,324 147,389 13,141
Acquire Time (usec.) 2555 21,527 3872

Table 8: Statistics of NN on 16 processors

Table 9 presents the speedups ofLRCd andV Csd.
The table shows the speedups of the VOPP version of
NN are significantly improved byV Csd. In order to
compare the performance of VOPP programs with MPI
programs, we run the equivalent MPI version ofNN on
MPICH [4]. The speedups of the MPI version ofNN is
also shown in Table 9. The performance of the VOPP
program is comparable with that of the MPI version



on up to 16 processors. On more than 16 processors,
the speedup of the VOPP program still keeps growing,
though it is not as good as the MPI program. We will in-
vestigate the reason behind the performance difference
between the VOPP program and the MPI program run-
ning on larger number of processors in the future.

2-p 4-p 8-p 16-p 24-p 32-p
LRCd 1.98 3.93 7.1 6.45 4.02 2.54
V Csd 1.99 3.97 7.73 13.43 16.17 16.95
MPI 1.78 3.64 7.17 14.08 20.22 25.38

Table 9: Speedup of NN onLRCd, V Csd and MPI

6 Conclusions

This paper presents a novel VOPP programming style
for DSM parallel programs on cluster computers. Sev-
eral applications are converted and optimized based on
the requirements of VOPP. Our experimental results
demonstrate the significant performance advantage of
VOPP and its great performance potential offered to
DSM implementations. VOPP is based on shared mem-
ory and is easy for programmers to use. It only re-
quires programmers to insert view primitives when a
view is accessed. The insertion of view primitives can
be automated by compiling techniques, which will be
investigated in our future research. We will also in-
vestigate the reasons behind the performance differ-
ence between VOPP programs and MPI programs and
will develop more efficient implementation techniques
for the associated VC model. Our ultimate goal is to
make shared memory parallel programs as efficient as
message-passing parallel programs.

References

[1] Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P.,
Lu, H., Rajamony, R., Yu, W., Zwaenepoel, W.:
TreadMarks: Shared memory computing on net-
works of workstations. IEEE Computer 29 (1996)
18–28

[2] Bershad, B.N., Zekauskas, M.J.: Midway: Shared
memory parallel programming with Entry Con-
sistency for distributed memory multiproces-
sors. CMU Technical Report (CMU-CS-91-170)
Carnegie-Mellon University (1991)

[3] Gharachorloo, K., Lenoski, D., and Laudon, J.:
Memory consistency and event ordering in scal-
able shared memory multiprocessors. In: Proc.

of the 17th Annual International Symposium on
Computer Architecture (1990) 15–26.

[4] Gropp, W., Lusk, E., Skjellum, A.: A high-
performance, portable implementation of the MPI
message passing interface standard. Parallel Com-
puting 22 (1996) 789–828

[5] Huang, Z., Purvis M., and Werstein P.: View
Oriented Update Protocol with Integrated Diff
for View-based Consistency. In: Proc. of the
IEEE/ACM Symposium on Cluster Computing
and Grid 2005 (CCGrid05), IEEE Computer So-
ciety (2005)

[6] Huang, Z., Purvis M., and Werstein P.: View-
Oriented Parallel Programming on Cluster
Computers. Technical Report (OUCS-2004-09),
Dept of Computer Science, Univ. of Otago, (2004)
(http://www.cs.otago.ac.nz/research/techreports.html)

[7] Huang, Z., Purvis M., and Werstein P.: View-
Oriented Parallel Programming and View-based
Consistency. In: Proc. of the Fifth International
Conference on Parallel and Distributed Comput-
ing, Applications and Technologies (LNCS 3320)
(2004) 505-518.

[8] Huang, Z., Sun, C., Cranefield, S., Purvis, M.:
A View-based Consistency model based on
transparent data selection in distributed shared
memory. Technical Report (OUCS-2004-03) Dept
of Computer Science, Univ. of Otago, (2004)
(http://www.cs.otago.ac.nz/research/techreports.html)

[9] Iftode, L., Singh, J.P., Li, K.: Scope Consistency:
A bridge between Release Consistency and En-
try Consistency. In: Proc. of the 8th Annual ACM
Symposium on Parallel Algorithms and Architec-
tures (1996)

[10] Keleher, P.: Lazy Release Consistency for dis-
tributed shared memory. Ph.D. Thesis (Rice Univ)
(1995)

[11] Lamport, L.: How to make a multiprocessor
computer that correctly executes multiprocess
programs. IEEE Transactions on Computers 28
(1979) 690–691

[12] Werstein, P., Pethick, M., Huang, Z.: A Per-
formance Comparison of DSM, PVM, and MPI.
In: Proc. of the Fourth International Conference
on Parallel and Distributed Computing, Applica-
tions and Technologies (PDCAT03), IEEE Press,
(2003) 476–482


