
CATS: Cache Aware Task-Stealing based on Online
Profiling in Multi-socket Multi-core Architectures

Quan Chen Minyi Guo
Shanghai Key Laboratory of Scalable Computing and

Systems,
Department of Computer Science and Engineering,

Shanghai Jiao Tong University, China
chen-quan@sjtu.edu.cn, guo-my@cs.sjtu.edu.cn

Zhiyi Huang
Department of Computer Science, University of Otago,

New Zealand
hzy@cs.otago.ac.nz

Abstract
Multi-socket Multi-core architectures with shared caches in each
socket have become mainstream when a single multi-core chip can-
not provide enough computing capacity for high performance com-
puting. However, traditional task-stealing schedulers tend to pollute
the shared cache and incur severe cache misses due to their ran-
domness in stealing. To address the problem, this paper proposes
a Cache Aware Task-Stealing (CATS) scheduler, which uses the
shared cache efficiently with an online profiling method and sched-
ules tasks with shared data to the same socket. CATS adopts an on-
line DAG partitioner based on the profiling information to ensure
tasks with shared data can efficiently utilize the shared cache. One
outstanding novelty of CATS is that it does not require any extra
user-provided information. Experimental results show that CATS
can improve the performance of memory-bound programs up to
74.4% compared with the traditional task-stealing scheduler.

Keywords Cache Aware, Task-stealing, Online Profiling, Multi-
socket Multi-core, Cache misses

1. Introduction
Multi-core processors have become mainstream since they have
better performance per watt and larger computational capacity than
complex single-core processors. However, each single CPU die can
hardly contain too many cores (such as, more than 128 cores) due
to the physical limitations in industrial manufacture. To fulfill the
urgent desire on powerful computers, many multi-core processors
are integrated together into a Multi-socket Multi-core (MSMC)
architecture. In an MSMC architecture, each CPU die is plugged
into a socket and the cores in the same socket have a shared cache;
however, the cores from different sockets can only share the main
memory.

To fully utilize the MSMC architectures, many parallel pro-
gramming environments have been proposed. In some parallel pro-
gramming environments, such as Pthread [9], MPI [18] and Mao-
tai [34], parallelism is expressed through multithreading. Program-
mers need to launch threads and assign tasks to these threads manu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICS ’2012 San Servolo Island, Venice, Italy
Copyright c© ACM [to be supplied]. . . $10.00

ally in multithreading. However, the manual assignment of tasks is
often burdensome for developing applications. To relieve the bur-
den of parallelization and task assignment, parallel programming
environments, such as Cilk [8], Cilk++ [25], TBB [30], Java’s fork-
join framework [23], X10 [24], and OpenMP [2], assign and sched-
ule tasks automatically. Task-sharing [2] and task-stealing (also
known as work-stealing1) [7] are the two most famous task schedul-
ing strategies.

In task-sharing, workers (i.e. threads) push new tasks into a
central task pool when they are generated. Tasks are popped out
from the task pool when workers are free to execute them. The
push and pop operations need to lock the central task pool, which
often causes serious lock contention.

Task-stealing, on the other hand, provides an individual task
pool for each worker. Most often each worker pushes tasks to and
pops tasks from its own task pool without locking. Only when a
worker’s task pool is empty, it tries to steal tasks from other workers
with locking. Since there are multiple task pools for stealing, the
lock contention is much lower than task-sharing even at task steals.
Therefore, task-stealing performs better than task-sharing as the
number of workers increases.

However, both task-sharing and task-stealing strategies sched-
ule tasks randomly to different cores. This randomness can cause
shared cache misses and degrade the performance of memory-
bound applications on MSMC architectures (to be discussed in de-
tail in Section 2). For example, two tasks with shared data may be
allocated to different sockets due to the randomness in these strate-
gies. In this case, both tasks cannot share the data loaded to the
shared cache but have to read the shared data from the main mem-
ory which could be hundreds times slower than the shared cache. If
the two tasks are scheduled to cores in the same socket, only one of
them needs to read the shared data from the main memory while the
other task can access the shared data from the shared cache directly.

Based on this observation, this paper proposes a Cache Aware
Task-Stealing (CATS) scheduler that automatically schedules tasks
with shared data into the same socket. CATS consists of two parts:
an online DAG partitioner and a bi-tier task-stealing scheduler. The
online DAG partitioner automatically divides the execution DAG
(Directed Acyclic Graph) of a parallel program into the inter-socket
tier and the intra-socket tier based on the profiling information col-
lected during execution. The bi-tier task-stealing scheduler allows
tasks in the inter-socket tier to be stolen across sockets, while tasks
in the intra-socket tier are scheduled within the same socket. Since
tasks from the intra-socket tier often share data, CATS can use the
shared cache efficiently.

1 we use “task-stealing” in this paper for the consistency of terms.

The contributions of this paper are as follows.

• We propose an online profiling method that automatically
collects run-time profiling information for cache aware task
scheduling. It enables the task scheduler to optimally utilize the
shared cache without extra user-provided information.

• We propose, in CATS, an online DAG partitioner that optimally
divides tasks into the inter-socket tier and the intra-socket tier
based on the profiling information, and a bi-tier task-stealing
algorithm that schedules tasks with shared data to the same
socket.

• We demonstrate that CATS significantly reduces the shared
cache misses and thus improves the performance of memory-
bound applications. The experiment shows that CATS can
achieve a performance gain of up to 74.4% for memory-bound
applications.

The rest of this paper is organized as follows. Section 2 de-
scribes the problem and explains the motivation of CATS. Sec-
tion 3 presents CATS, including the online DAG partitioner and
the bi-tier task-stealing scheduler. Section 4 shows the experimen-
tal results, performance evaluation and the limitations of CATS.
Section 5 discusses the related work. Section 6 draws conclusions
and sheds light on future work.

2. Problem and Motivation
For many parallel programming environments such as Cilk, the ex-
ecution of a parallel program can often be expressed by a Directed
Acyclic Graph (DAG) G = (V,E), where V is a set of nodes, and
E is a set of directed edges [17]. Each node in a DAG represents
a task (i.e., a set of instructions) that must be executed sequen-
tially without preemption, and the edges in a DAG correspond to
the dependence relationship among the nodes. Fig. 1 shows exe-
cution DAG of a general parallel program. In the figure, the solid
lines represent the task generating relationship and the strings by
the side of nodes are the identifiers of the corresponding tasks.

2.1 The problem
We use Fig. 1 as an example to explain the problem of shared
cache pollution in an MSMC architecture. In many parallel pro-
grams based on the Jacobi iteration algorithm, neighbor tasks need
to access some shared data. For example, Five-point heat distribu-
tion and Successive Over-Relaxation are examples of such parallel
programs. Therefore, γ1 and γ2, γ3 and γ4 in Fig. 1 have shared
data respectively.

Spawn

Iteration

Main

γ1 γ2 γ3 γ4

1

1_1

1_1_1 1_1_2

Figure 1. A general execution DAG for iteration-based parallel
programs.

We assume the parallel program in Fig. 1 runs on a dual-socket
dual-core architecture. If γ1, γ2, γ3 and γ4 are scheduled as shown
in Fig. 2(a), the shared data between γ1 and γ2 and the shared data
between γ3 and γ4 is only read into the shared cache once from

the main memory. Since most tasks can access the shared data in
the shared cache of the socket, cache misses are reduced in this
schedule.

C0 C1

Socket 0

C2 C3

Socket 1

γ2 γ1 γ3 γ4

(a) Optimal scheduling

C0 C1

Socket 0

C2 C3

Socket 1

γ1γ3 γ2 γ4

(b) Another possible scheduling

Figure 2. Two possible scheduling of γ1, γ2, γ3 and γ4 on a
dual-socket dual-core architecture. The first scheduling can gain
performance improvement due to cache sharing and reduction of
memory footprint.

However, for random task-stealing, since it randomly chooses a
victim to steal tasks, γ1, γ2, γ3 and γ4 are likely to be randomly
scheduled to the cores as shown in Fig. 2(b). In this case, each task
needs to read all its data from the main memory. This larger mem-
ory footprint leads to more compulsory cache misses. Even worse,
if the memory footprint exceeds the capacity of the shared cache,
the situation leads to more capacity cache misses and increases the
chances of conflict cache misses. The resulted larger number of
cache misses will lead to the worse performance of memory-bound
applications.

Though there were several task schedulers proposed [4, 5] to
reduce cache misses, they either need extra user-provided informa-
tion [11], or are not general enough for MSMC architectures [4].

2.2 Proposed Solution
If a task-stealing scheduler can ensure tasks with shared data are
scheduled to the same socket as shown in Fig. 2(a), the shared cache
misses will be minimized and the performance of memory-bound
applications can be improved. To achieve the purpose, we propose
the Cache Aware Task-Stealing (CATS) scheduler in this paper.

CATS is proposed based on the following three observations
of the execution of parallel programs as shown in Fig. 1. First,
parallel tasks create child tasks recursively until the data set for
each leaf task is small enough. During the procedure, only the leaf
tasks physically touch the data. Second, a parallel program often
works on the same data set for a large number of iterations. Finally,
neighbor tasks usually share some data.

Based on the runtime profiling information, CATS can divide
an execution DAG into the inter-socket tier and the intra-socket
tier. For example, CATS may divide the execution DAG in Fig. 1
into two tiers separated by the shaded tasks. The shaded tasks
are called leaf inter-socket tasks. Tasks above the leaf inter-socket
tasks, including the leaf inter-socket tasks, are called inter-socket
tasks, which belong to the inter-socket tier. Tasks in a subtree rooted
with a leaf inter-socket task are called intra-socket tasks, which
belong to the intra-socket tier. A subtree rooted with a leaf inter-
socket task is called an intra-socket subtree. For example, in Fig. 1,
tasks in an ellipse consist in an intra-socket subtree. The goal of
CATS is to schedule tasks in the same intra-socket subtree within
the same socket. In this way, CATS can ensure γ1 and γ2 (or γ3 and
γ4) to be executed in the same socket.

However, to achieve the optimal scheduling, it is very challeng-
ing to find the proper leaf inter-socket tasks so that tasks in the
same intra-socket subtree will be able to utilize the shared cache
efficiently. If an intra-socket subtree is too large, the involved data
can be too large to fit into the shared cache of the socket. On the
other hand, if an intra-socket subtree is too small, the workload of

the subtree can be too small to get better balanced among the cores
of the same socket.

CATS uses an online DAG partitioner to find leaf inter-socket
tasks and partition an execution DAG into two tiers. When CATS
starts to execute a parallel program, the partitioner first profiles the
program in the first iteration. Based on the profiling information,
the online DAG partitioner adaptively divides the execution DAG
into two tiers (to be discussed in Section 3.2). According to our first
observation of parallel programs, the collected profiling informa-
tion in the first iteration can be used to predict the execution behav-
ior of the following iterations. Therefore, an optimal partitioning
of DAG based on the profiling information of the first iteration will
also be optimal for the following iterations.

After the runtime partitioning of the DAG, a bi-tier task-stealing
algorithm is adopted in CATS to schedule tasks in the two tiers dif-
ferently. The inter-socket tasks are scheduled across sockets, while
the tasks in the same intra-socket subtree are scheduled within the
same socket. CATS ensures that each socket can only execute one
intra-socket subtree at the same time to avoid cache pollution. In
this way, the shared data can be reused without reloading among
tasks within an intra-socket subtree. That is, the scheduling in
Fig. 2(a) can be enforced to reduce cache misses.

Fig. 3 illustrates the detailed processing flow of a parallel pro-
gram in CATS.

Start
Execution

Profiling End

First Iteration

Partitioning

Online DAG partitioner Bi-tier task-stealing scheduler

Executing

The following Iterations

Figure 3. The processing flow of a parallel program in CATS.

3. Cache Aware Task-Stealing
This section presents CATS, a Cache Aware Task-Stealing sched-
uler. First, we give the CATS runtime environment. Then we de-
scribe an online DAG partitioner for dividing the execution DAG
into two tiers. Third, we present the bi-tier task-stealing algorithm,
the task-generating policy and the implementation details in CATS.
Lastly, we discuss the time and space bounds of CATS.

3.1 CATS runtime environment
To support the processing flow in Fig. 3, we have built a runtime en-
vironment for CATS as follows. For an M -socket N -core architec-
ture, CATS launches M ×N workers (i.e., threads) at runtime and
affiliates each worker with one individual hardware core as shown
in Fig. 4. For convenience of presentation, we use the term core to
mean a worker in the rest of the paper.

In each socket, only one core is selected as the head core of
the socket to look after the inter-socket task scheduling. In our
implementation, we choose “core 0” in each socket as the socket’s
header core.

In order to schedule inter-socket tasks and intra-socket tasks in
different ways in bi-tier task-stealing, CATS creates an inter-socket
task pool for each socket to store inter-socket tasks, and an intra-
socket task pool for each core to store intra-socket tasks, as shown
in Fig. 4. A task pool is a double-ended queue (deque) that is used
to store tasks.

During the first iteration of a parallel program, all the tasks are
generated and pushed into intra-socket task pools when they are
generated. In this case, tasks are scheduled adopting traditional
task-stealing policy. That is, in the first iteration, tasks in intra-
socket task pools can be scheduled across sockets since the pro-
filing information has not been collected and thus the execution

c0

Socket 0

Inter-socket
task pool

Intra-socket task pools

c1

Shared Cache

Socket 1

Inter-socket
task pool

c3c2

Shared Cache

Figure 4. CATS runtime environment in a dual-socket dual-core
architecture. Each socket has an inter-socket task pool and each
core has an intra-socket task pool.

DAG has not been partitioned. In the following iterations, tasks are
generated and pushed into different pools accordingly. If core c in
socket ρ generates a task γ that is an inter-socket task, γ is pushed
into ρ’s inter-task pool. Otherwise, if γ is an intra-socket task, it is
pushed into c’s intra-socket task pool.

We present the online DAG partitioner and the bi-tier task-
stealing scheduler in detail in the following sections.

3.2 Online DAG partitioner
As explained in Section 2, to partition an execution DAG into
the inter-socket tier and the intra-socket tier optimally, the most
challenging problem is to find the proper leaf inter-socket tasks.
Once the proper leaf inter-socket tasks are identified, the DAG can
be easily divided into two tiers: all the tasks above the leaf inter-
socket tasks (including the leaf inter-socket tasks) belong to the
inter-socket tier, and those tasks in the subtrees rooted with leaf
inter-socket tasks belong to the intra-socket tier.

An optimal partitioning of an execution DAG should satisfy two
constraints. The first constraint is that, for any intra-socket subtree
ST , the involved data of all the tasks in ST is small enough to fit
into the shared cache of a socket. The second constraint is that an
intra-socket subtree ST should be large enough to allow a socket
to have sufficient intra-socket tasks.

To fulfill the two constraints when dividing an execution DAG,
for any task γ in the execution DAG, CATS should collects its
involved data size. For convenience of description, we use Size
Of Involved Data (SOID) to represent the involved data size of
a task γ. That is, SOID includes the data accessed by all tasks
in the subtree rooted with γ. Once the SOIDs for all tasks in the
execution DAG are known, the online DAG partitioner can divide
the execution DAG into two tiers optimally.

3.2.1 Online Profiling
In order to collect SOIDs of all the tasks in the execution DAG,
CATS profiles the program during the first iteration of the exe-
cution. During the online profiling, we use the hardware Perfor-
mance Monitoring Counters (PMC) [3] to collect cache misses,
based on which the SOIDs for all tasks are calculated. The per-
formance counter event we have used is the last level private data
cache (e.g. L2 in AMD Quad-core Opteron 8380) misses. That is,
we have used the performance counter event “07Eh” with mask of
“02h” to collect the last level private data cache misses in AMD
Quad-core Opteron 8380. For detailed information of the perfor-
mance counter events, refer to BIOS and Kernel Developer’s Guide
of the corresponding processor. Though it is straightforward to col-
lect the event statistics of the last level private data cache misses in
modern multi-core machines like X86 64, it is very tricky to calcu-
late the SOIDs of the tasks based on the last level private data cache
misses.

First, limited by the hardware PMCs, a core can only collect the
cache misses of its own, but a task may have multiple child tasks
executing on different cores. Therefore, it is impossible to collect
the overall cache misses for a task directly.

Second, it is nontrivial to relate the private cache misses to the
SOID of a task. For a task γ that runs on a core c in socket ρ, if γ
fails to get its data from the last level private cache of c, it requests
the data from the shared cache of ρ. Since c does not execute other
tasks when it is executing γ, the last level private cache misses of c
are totally caused by γ. The last level cache misses of c can be used
to approximate to the size of data accessed by γ for the following
reasons. Many memory-bound applications adopt data parallelism.
As mentioned in our second observation in Section 2.2, only the
leaf tasks physically access data. The data of leaf tasks do not have
much overlapping with each other. Even when two neighbor leaf
tasks have a small portion of shared data, the chances for them to
be executed in the same core are small in a random task-stealing
scheduler, which is adopted during the profiling stage. Therefore,
the above approximation is accurate enough for us to calculate the
SOIDs of all tasks.

Based on the collected last level private cache misses of γ, its
SOID is calculated as follows. If γ is a leaf task, the number of
cache misses of γ times the cache line size (e.g., 64 bytes in AMD
Quad-core Opteron 8380) is γ’s SOID. Otherwise, if γ is not a leaf
task, its SOID is the sum of its cache misses times the cache line
size plus the SOIDs of all its child tasks. Given a task β with n
sub-tasks β1, β2, ..., βn. SupposeM is β’s number of cache misses
times the size of cache line, and the SOIDs of its child tasks are S1,
S2, ..., Sn respectively, then β’s SOID, denoted by Sβ , is calculated
in Eq. 1.

Sβ =M +

n∑
i=1

Si (1)

Based on Eq. 1, Fig. 5 presents an example of calculating SOIDs
for all the tasks. In the figure, Si is the SOID for leaf task γi, but
represents the size of data physically accessed by the task itself for
non-leaf tasks. In fact, for many memory-bound applications, Si for
non-leaf tasks is very small, if it is not zero, since non-leaf tasks do
not physically access data.

S4 S5 S6 S7 S8

S2+(S4+S5) S3+(S6+S7+S8)

...

S1+(S2+S4+S5)+
(S3+S6+S7+S8)

Return

γ1

γ2 γ3

γ4 γ5 γ6 γ7 γ8

Figure 5. Collect Size Of Involved Data (SOID) for tasks.

As shown in Fig. 5, the SOID of a task is returned to its parent
task when it is completed. For example, in Fig. 5, γ2’s SOID is
added to γ1’s SOID when γ1 is completed. Therefore, when all the
tasks in the first iteration are completed, the SOIDs of all the tasks
can be calculated.

3.2.2 DAG Partitioning
Based on the SOIDs of tasks that are collected in the first iteration,
the online DAG partitioner divides the execution DAG into inter-
socket tier and intra-socket tier automatically.

To satisfy the aforementioned constraints, the online DAG par-
titioner identifies leaf inter-socket tasks as follows. For a task α and
its parent task αp, let Dα and Dαp represent SOIDs of α and αp
respectively. α is a leaf inter-socket task if and only ifDα is smaller
than the size of the shared cache and Dαp is larger than the size of
the shared cache.

More precisely, given a task α and its parent task αp, our DAG
partitioning method determines α’s tier as follows.

• If bothDαp andDα are larger than the shared cache of a socket,
α is an inter-socket task, as shown in Fig. 6(a).

• If Dαp is larger than the shared cache and Dα is smaller than
the shared cache of a socket, α is a leaf inter-socket task, as
shown in Fig. 6(b).

• If both Dαp and Dα are smaller than the shared cache, α is an
intra-socket task, as shown in Fig. 6(c).

αP c

α c

(a) α is an inter-socket
task

αP c

α c

(b) α is a leaf inter-
socket task

αP c

α c

(c) α is an intra-socket
task

Figure 6. Conditions that α is an inter-socket task, leaf inter-
socket task or intra-socket task.

After the profiling and the partitioning, the online DAG parti-
tioner has already divided the execution DAG into two tiers opti-
mally. Then, based on the optimal partitioning, bi-tier task-stealing
can be adopted to schedule tasks for optimizing shared cache in the
following iterations.

In order to identify the same task in the following iterations,
during the execution of a parallel program, each task is given an
identifier (string) according to the spawning relationship between
tasks. If a task γ’s identifier is S, then its ith sub-task’s identifier is
S i. For example, Fig. 1 shows the way of constructing identifiers
for tasks. The strings beside the tasks are the identifiers in Fig. 1.
The identifiers of all the completed tasks are saved in a hash table
with their SOIDs. When a new task is spawned, CATS tries to find
its identifier in the hash table. If the identifier is found, it means the
first iteration has completed since a new task in the same location
of the execution DAG has been spawned. In this case, CATS uses
the bi-tier task-stealing scheduler to schedule tasks based on their
tiers which are decided according to their SOIDs as shown above.

Note that, in our implementation, we obtain the size of the
shared cache from /proc/cpuinfo by the CATS runtime system. In
this way, all the needed information for optimal bi-tier task-stealing
is obtained automatically by the runtime system of CATS. To this
end, CATS can automatically improve the performance of parallel
application without human intervention.

3.3 Bi-tier task-stealing scheduler
Task-stealing algorithm is used by a free core to obtain or steal a
new task. When CATS starts to execute a parallel program, during
the first iteration, CATS has not partitioned its execution DAG into
two tiers. Therefore, the cores adopt the traditional task-stealing
algorithm to obtain or steal a new task in the first iteration. In the
following iterations, CATS adopts a bi-tier task-stealing algorithm
to schedule tasks so that tasks in a subtree rooted with a leaf inter-
socket task are scheduled to the same socket. Since traditional
task-stealing has been discussed in detail in [7], this section only
presents the bi-tier task-stealing in CATS.

When a core c in socket ρ is free, it first tries to obtain a task
from its own intra-socket task pool. If its own task pool is empty, c
tries to steal a task from the intra-socket task pools of other cores
in ρ. If the task pools of all the cores in ρ are empty, the head core
of ρ tries to obtain a task from its own inter-socket task pool. If
its inter-socket task pool is empty, the head core tries to steal an
inter-socket task from other sockets.

In CATS, only the head core of each socket can steal inter-
socket tasks so that the lock contention of the inter-socket task
pools is reduced. In addition, cores in the same socket are not
allowed to execute tasks in different intra-socket subtrees at the
same time. This policy can avoid the situation where different intra-
socket subtrees pollute the shared caches with different data sets.
The downside of the policy is that some cores in a socket may
be idle waiting for other cores to finish their tasks. An alternative
policy is to allow a socket to execute tasks from more than one
intra-socket subtrees at the same time. This alternative policy can
ensure most cores are busy, but different intra-socket subtrees may
pollute the shared caches, which leads to more cache misses. For
the memory-bound applications that CATS is targeting, the cache
misses are more critical to the overall performance according to our
experimental results. Therefore, we have adopted the first policy in
CATS.

3.4 Task generating Policy
Two types of task-generating policies, parent-first and child-first,
can be adopted for task stealing. In the parent-first policy, a core
continually executes the parent task after spawning a child task,
leaving the child task for later execution or for stealing by other
cores. One such example is the help-first policy proposed in [19].
Parent-first policy works better when the steals are frequent and the
execution DAG is shallow [19]. In the child-first policy, however, a
core executes the child task immediately after the child is spawned,
leaving the parent task for later execution or for stealing by other
cores. For example, the MIT Cilk uses the child-first policy, aka.
work-first in [8]. Child-first policy works better when the steals are
infrequent [19].

During the first iteration of a parallel programs, tasks have not
been divided into inter-socket tasks and intra-socket tasks. For the
convenience of collecting SOID, we choose to adopt the parent-first
policy in the first iteration.

After the execution DAG has been divided into two tiers, CATS
generates inter-socket tasks with the parent-first policy and gen-
erates intra-socket tasks with the child-first policy. CATS adopts
the parent-first policy for generating inter-socket tasks so that leaf
inter-socket tasks can be generated as soon as possible. The parent-
first policy is more efficient in this case because inter-socket tasks
take short time and thus are frequently stolen. On the other hand,
CATS adopts the child-first policy to generate intra-socket tasks.
The child-first policy works better in this case because the leaf tasks
take longer time and thus the steals are infrequent. Also the child-
first policy is more space efficient.

3.5 Implementation
We implement CATS on the basis of MIT Cilk. All the Cilk pro-
grams can run in CATS without any modifications. MIT Cilk is one
of the earliest parallel programming environments that implement
task-stealing [16]. It extends C with three keywords: cilk, spawn
and sync to declare parallelism in the program. cilk identifies a pro-
cedure as a Cilk procedure, spawn is used to generate a child task,
and sync waits for all the child tasks that are generated by the cur-
rent task, to return. MIT Cilk consists of a compiler and a scheduler.
Cilk compiler, named as cilk2c, is a source-to-source translator that
transforms a Cilk source into a C program. Once a task is gener-
ated, a task frame is created to store the information needed by the

task and the scheduler. The Cilk scheduler uses the traditional task-
stealing policy.

We have modified cilk2c to support both the parent-first and
child-first task-generating policy while the original MIT cilk2c
only support the child-first policy. At each spawn, CATS finds out
whether the spawn happens in the first iteration of the program. If
it is in the first iteration, the to-be-spawned task is spawned with
the parent-first policy. If it is not in the first iteration and the to-be-
spawned task’s SOID is smaller than the size of the shared cache,
CATS spawns the task with the child-first policy and pushes the
task into the intra-socket task pool of the current core. Otherwise,
CATS spawns the task with the parent-first policy and pushes the
task into the inter-socket task pool of the current socket.

Since CATS aims to reduce shared cache misses, CATS may not
work very well for CPU-bound applications since the cache misses
have neutral effect on their performance. On the contrary, CATS
may adversely affect the performance of the CPU-bound applica-
tions. To avoid the problem, an interface could be provided for users
so that they can tell CATS that whether the to-be-executed pro-
gram is CPU-bound or not through command line. However, even
if the users could not figure out if the program is memory-bound or
CPU-bound, CATS has provided the following mechanism to iden-
tify whether it is CPU-bound based on the profiling information
collected in the first iteration. Given an MSMC architecture with k
levels of caches and the cache miss penalty (i.e. the delay) of the ith
level cache is pi. Let ni represent the ith level cache misses of γ.
The normalized cache misses of γ is M =

∑k
i=1(ni ×

pi
p1
). Sup-

pose the number of instructions in γ isN , we can use CMPI (Cache
Misses Per Instruction), CMPI γ = M

N
, to decide γ is CPU-bound

or memory-bound. If CMPI γ is smaller than a predefined thresh-
old, γ is CPU-bound. If most tasks are CPU-bound, CATS treats
the program as a CPU-bound program. In this case, CATS simply
generates and schedules tasks of CPU-bound programs in the same
way as the traditional task-stealing algorithm. Experiment results in
Section 4.3 show that the extra overhead in CATS for CPU-bound
programs is negligible.

3.6 Theoretical time and space bounds
Since CATS also uses bi-tier task-stealing algorithm to schedule
tasks in a parallel program except the first iteration, the theoret-
ical time and space bounds of CATS are same to the bounds in
CAB [11] although CATS can handle more complex execution
DAGs. As in [11], we model the execution of a parallel program
as an execution DAG G. Each node in G represents a unit task, and
each edge represents a dependence between tasks. Here we only
give the time and space bounds of CATS. Detailed deduction of the
time and space bounds can be found in [11].

The time bound of CATS in an M -socket N -core architecture
can be expressed as Eq. 2.

TM∗N (G) = O(
T1(Gir)
M

+
T1(Gia)
M ×N + T∞(G)) (2)

In Eq. 2, T1(Gir) means the number of nodes in the inter-socket
tier in G and T1(Gia) means the number of nodes in the intra-socket
tier in G. According to the equation, the inter-socket tier is executed
by only M head cores. However, in memory-bound applications,
only the leaf tasks in the DAG process input data, while the inter-
socket tasks only divide the input data into smaller parts. Therefore,
for memory-bound applications, the main part of the execution
time is spent by the leaf tasks, i.e., the intra-socket tasks. Our
experiments show that the execution time of the inter-socket tier
is often less than 5% of the overall execution time. Therefore, the
time bound of Eq. 2 is very close to the traditional task-stealing
schedulers such as Cilk for memory-bound applications.

The space bound of CATS is shown in Eq. 3.

SM∗N (G) ≤ max{K × S1(G),M ×N × S1(G)} (3)

In the equation, we assume there are K leaf inter-socket tasks.
Since K is not much larger than M , the space bound has the same
O-notation as the traditional task-stealing schedulers.

4. Evaluation
We use a Dell 16-core computer that has four AMD Quad-core
Opteron 8380 processors (codenamed “Shanghai”) running at 2.5
GHz to evaluate the performance of CATS. Each Quad-core socket
has a 512K private L2 cache for each core and a 6M L3 cache
shared by all four cores. The computer has 16GB RAM and runs
Linux 2.6.29.

Since CATS is proposed to reduce cache misses, we use
memory-bound benchmarks to evaluate the performance of CATS.
However, CPU-bound benchmarks are also used to measure the
extra overhead of CATS compared with random task-stealing.

Table 1. Benchmarks used in the experiments
Name Bound Description

Mandelbrot CPU Calculate Mandelbrot Set
Queens(15) CPU N-queens problem
FFT CPU Fast Fourier Transform
GA CPU Island Model of Genetic Algorithm
Knapsack CPU 0-1 knapsack problem
Heat Memory Five-point heat
Heat-ub Memory Five-point heat (unbalance)
SOR Memory Successive Over-Relaxation
SOR-ub Memory Successive Over-Relaxation (unbalance)
GE Memory Gaussian elimination
GE-ub Memory Gaussian elimination (unbalance)

To evaluate the performance of CATS in different scenarios, we
use benchmarks that have both balanced and unbalanced execution
DAGs in the experiments. Table 1 lists the used CPU-bound and
memory-bound benchmarks. Heat-ub, GE-ub and SOR-ub imple-
ment the same algorithm as Heat, GE and SOR respectively, ex-
cept their execution DAGs are unbalanced trees. For example, we
implement Heat-ub in Algorithm 1. According to the algorithm,
the branching degree of tasks created from cilk procedure heat is
2 while the branching degree of tasks created from cilk procedure
heat2 is 4. Obviously, Heat-ub’s DAG is an unbalanced tree. GE-ub
and SOR-ub are implemented in the similar way.

Algorithm 1 The source code skeleton of Heat-ub
cilk void heat (int start, int end) {

int mid = (start + end) / 2;
spawn heat2 (start, mid);
spawn heat (mid, end);
sync; return;
}
cilk void heat2 (int start, int end) {

int quad = (end - start) / 4;
spawn heat (start, start + quad);
spawn heat (start + quad, start + 2 * quad);
spawn heat2 (start + 2 * quad, start + 3 * quad);
spawn heat (start + 3 * quad, end);
sync; return;
}

As mentioned before, CATS affiliates each worker with a hard-
ware core. However, MIT Cilk does not affiliate workers with the

cores. Since the affiliation can improve the cache performance of
the execution, it is unfair to compare CATS with the original MIT
Cilk. Therefore, we have modified the MIT Cilk to affiliate each
worker with a hardware core (denoted as Cilk-a for short), in order
to ensure fair comparison.

In all of our experiments, we compare the performance of CATS
with Cilk-a. Cilk-a uses the pure child-first policy to spawn and
schedule tasks, while CATS flexibly uses both the child-first and
parent-first policies to achieve the best performance. We implement
all the task-stealing schedulers based on MIT Cilk. The MIT Cilk
programs run with Cilk-a and CATS without any modification.

All benchmarks are compiled with “cilkc -O2”, which is based
on gcc 4.4.3. Furthermore, for each test, every benchmark is run ten
times. Since the execution time is very stable, the average execution
time is used in the final results.

4.1 Performance of memory-bound applications
Fig. 7 shows the performance of memory-bound benchmarks in
Cilk-a and CATS with a 1024 × 512 matrix as the input data.
For GE and GE-ub, the used input data is a 1024 × 1024 matrix.
As we can see from Fig. 7, CATS can significantly improve the
performance of memory-bound applications compared to Cilk-a
while the performance improvement ranges from 35.3% to 74.4%.

GE GE-ub Heat Heat-ub SOR SOR-ub
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
 Cilk-a CATS

Figure 7. The performance of memory-bound benchmarks in
Cilk-a and CATS.

To explain why CATS can improve the performance of memory-
bound applications compared with Cilk-a, we collect the cache
misses of all the benchmarks and list them in Table 2. Observed
from the table, we can find that the shared cache (L3) misses are
prominently reduced while the private cache (L1 and L2) misses are
also slightly reduced in CATS compared with Cilk-a. Since CATS
schedules tasks with shared data into the same socket, the shared
cache misses have been significantly reduced.

Although scheduling tasks with shared data to the same socket
only reduces the shared L3 cache misses, the affiliation of an intra-
socket subtree with a socket in CATS can help reduce the L2 cache
misses slightly. In CATS, for a task γi in an intra-socket subtree,
if it is executed by core c in socket ρ, its neighbor tasks (i.e., γi−1

and γi+1) are also executed by w as well unless they are stolen by
other cores in ρ. In random task-stealing, however, any free cores
can steal γi’s neighbor tasks. There are fewer cores that can steal
γi’s neighbor tasks in CATS compared to random task-stealing.
Therefore, the probability that neighbor tasks are executed by the
same core is larger in CATS. For this reason, the private cache (e.g.,
L2) misses have also been slightly reduced in CATS.

Fig. 8 shows the SOIDs of Heat with a 1024 × 512 matrix
as input data that are calculated as Eq. 1. The real involved data
size of tasks in Fig. 8 are calculated as follows. Since Heat uses

Table 2. Cache misses in Cilk-a and CATS (*1E6)
Application Scheduler L1 L2 L3

GE Cilk-a 60.8 58.8 14.5
CATS 53.9 50.3 2.94

GE-ub Cilk-a 37.2 37.1 10.7
CATS 23.9 20 2.15

Heat Cilk-a 82.7 79.6 24.8
CATS 71.1 67.5 5.9

Heat-ub Cilk-a 82.2 78.7 29.7
CATS 71.3 67.6 3.72

SOR Cilk-a 88.5 85 29.6
CATS 70.7 66.2 4.75

SOR-ub Cilk-a 89.8 85.5 30.7
CATS 73.6 67.4 8.27

SOID = 17.9MB

8.57MB 8.52MB

3.79MB 4.54MB 4.79MB 3.72MB

16MB

8MB 8MB

4MB 4MB 4MB 4MB

...

...

...

Figure 8. Calculated SOIDs of tasks in Heat with a 1024 × 512
matrix as input data.

two matrices of “double” during the execution, the overall effective
input data size is 1024×512×16×2 = 16MB. Then, the data set is
divided into two parts recursively. From the figure, we can find that
the calculated SOIDs are not far away from the real involved data
size. Therefore, our online DAG partitioner is reasonably effective.

4.2 Scalability of CATS
To evaluate scalability of CATS in different scenarios, we use
benchmarks that have both balanced and unbalanced execution
DAGs. In this experiment, we execute benchmarks with different
input data sizes in CATS and Cilk-a. Their performance is then
compared.

During the execution of all the benchmarks, every task divides
its data set into several parts by rows to generate child tasks unless
the task meets the cutoff point (i.e., the data set size of a leaf task).
Since the data set size of the leaf tasks affects the measurement of
scalability, we should ensure that the data set size of the leaf tasks
is constant in our experiment. To satisfy this requirement, we use
a constant cutoff point, 8 rows, for the leaf tasks, and a constant
number of columns, 512, for the input data. We only adjust the
number of rows of the input matrix in the experiment. In this way,
we can measure the scalability of CATS without the impact of the
granularity of the leaf tasks. In all the following figures, the x-axis
represents the row number of the input data set.

4.2.1 Balanced execution DAGs
We use Heat and SOR as benchmarks to evaluate the scalability of
CATS in scenario that applications with balanced execution DAGs.
Other benchmarks, such as GE, have similar results.

Fig. 9 shows the performance of Heat and SOR with different
input data sizes in Cilk-a and CATS. From Fig. 9, we can see that
Heat and SOR achieve better performance in CATS for all sizes of
the input data up to 8192 rows compared with Cilk-a. When the
input data size is small (i.e., 1024 × 512), CATS reduces 40.4%
execution time of Heat and reduces 56.1% execution time of SOR.

1024 2048 3072 4096 5120 6144 7168 8192
0

1000

2000

3000

4000

5000

6000

7000

8000

E
xe

cu
tio

n
tim

e
(m

s)

 Cilk-a CATS

(a) Performance of Heat

1024 2048 3072 4096 5120 6144 7168 8192
0

1000

2000

3000

4000

5000

6000

7000

8000

E
xe

cu
tio

n
tim

e
(m

s)

 Cilk-a CATS

(b) Performance of SOR

Figure 9. Performance of Heat and SOR with different input data
sizes.

When the input data size is large (i.e., 8192× 512), CATS reduces
12.3% execution time of Heat and reduces 21.1% execution time
of SOR.

Fig. 10 shows the L2 and L3 cache misses of Heat with dif-
ferent input data sizes in Cilk-a and CATS. Observed from the
figure, we can find that both the shared cache misses and the pri-
vate cache misses are reduced in CATS compared with Cilk-a. The
better performance of Heat in CATS results from the less cache
misses in CATS compared with Cilk-a. When the input data size
is small (1024 × 512), CATS can reduce 76.1% L3 cache misses
and 15.2% L2 cache misses compared with Cilk-a. When the input
data size is large (8192× 512), CATS can reduce 55.9% L3 cache
misses and 3.6% L2 cache misses compared with Cilk-a. Therefore,
when CATS schedules regular applications with balanced execu-
tion DAGS, it is scalable. Other benchmarks show similar results
of cache misses. We omit them here due to limited space.

4.2.2 Unbalanced execution DAGs
We use Heat-ub and SOR-ub as benchmarks to evaluate the scala-
bility of CATS in scenario that applications with unbalanced execu-
tion DAGs. Other benchmarks, such as GE-ub, have similar results.

Fig. 11 shows the performance of Heat-ub and SOR-ub with
different input data sizes in Cilk and CATS. From Fig. 11 we can
find that Heat-ub and SOR-ub also achieve better performance in
CATS for all input data sizes compared with Cilk-a. When the input
data size is small (i.e., 1024×512), CATS reduces 35.3% execution
time of Heat-ub and reduces 44.9% execution time of SOR-ub.
When the input data size is large (i.e., 8192× 512), CATS reduces
11.4% execution time of Heat-ub and reduces 18% execution time
of SOR-ub.

1024 2048 3072 4096 5120 6144 7168 8192
0

100

200

300

400

500

600

L2
 c

ac
he

 m
is

se
s

(*
1E

6)
 Cilk-a CATS

(a) L2 cache misses of Heat

1024 2048 3072 4096 5120 6144 7168 8192
0

100

200

300

400

500

600

L3
 c

ac
he

 m
is

se
s

(*
1E

6)

 Cilk-a CATS

(b) L3 cache misses of Heat

Figure 10. L2 and L3 cache misses of Heat with different input
data sizes.

Fig. 12 shows the L2 and L3 cache misses of SOR-ub with
different input data sizes. Observed from the figure, we can find
that both the shared cache misses and the private cache misses of
SOR-ub are reduced in CATS compared with Cilk-a. The better
performance of SOR-ub in CATS results from the less cache misses
in CATS compared with Cilk-a. When the input data size is small,
CATS can reduce 73.1% L3 cache misses and 21.2% L2 cache
misses compared with Cilk. When the input data size is large,
CATS can reduce 38.2% L3 cache misses and 5.2% L2 cache
misses compared with Cilk. Other benchmarks show similar results
of cache misses. We omit them here due to limited space.

As illustrated in Fig. 9 and Fig. 11, the execution time of bench-
marks in both Cilk-a and CATS increases linearly in nearly the
same speed with the increasing of input data size. Therefore, for
all the input data size, CATS can reduce the execution time of
memory-bound applications. Thus CATS is scalable in scheduling
both balanced execution DAGs and unbalanced execution DAGs.

In addition, Fig. 10 and Fig. 12 further verify that CATS can
also slightly reduce private cache misses by scheduling tasks with
shared data into the same socket although it is proposed to reduce
shared cache misses.

4.3 Performance of CPU-bound applications
Since CATS is proposed to reduce shared cache misses of memory-
bound applications, it is neutral to CPU-bound applications. There-
fore, for CPU-bound applications, CATS uses child-first policy to
schedule the tasks as Cilk-a.

Fig. 13 shows the performance of CPU-bound benchmarks
listed in Table 1 in Cilk-a and CATS. By comparing the perfor-

1024 2048 3072 4096 5120 6144 7168 8192
0

1000

2000

3000

4000

5000

6000

7000

8000

E
xe

cu
tio

n
tim

e
(m

s)

 Cilk-a CATS

(a) Performance of Heat-ub

1024 2048 3072 4096 5120 6144 7168 8192
0

1000

2000

3000

4000

5000

6000

7000

8000

E
xe

cu
tio

n
tim

e
(m

s)

 Cilk-a CATS

(b) Performance of SOR-ub

Figure 11. Performance of Heat-ub and SOR-ub with different
input data sizes.

mance of CATS with Cilk-a, we can find the extra overhead of
CATS since they adopt the same policy to schedule CPU-bound
applications. Observed from Fig. 13, we see the extra overhead of
CATS is negligible compared with Cilk-a. The extra overhead of
CATS mainly comes from the profiling overhead in the first iter-
ation during the execution of a parallel program, when CATS can
decide if the program is CPU-bound or memory-bound.

4.4 Discussion
As mentioned before, CATS targets memory-bound programs
whose execution DAGs are tree-shaped. Therefore the most impor-
tant limitation of CATS is that CATS is not suitable for programs
whose DAGs are not tree-shaped since the DAG partitioner is not
applicable to non-tree DAGs. CATS is applicable to divide-and-
conquer programs because they have tree DAGs. We have modified
cilk2c to check for the divide-and-conquer programs at compile
time by analyzing the task generating pattern in the source code.
If any function in the source code generates new tasks that run the
same function as itself, the program is assumed to be a divide-and-
conquer program. For programs that do not follow the divide-and-
conquer pattern, CATS can simply use random task-stealing for
task scheduling in the execution. Therefore, the above limitation
does not affect the applicability of CATS since the compiler can
identify the class of programs that are suitable for CATS.

5. Related Work
Reducing cache misses of parallel programs in parallel architec-
tures is a popular research issue. However, many of the existing

1024 2048 3072 4096 5120 6144 7168 8192
0

100

200

300

400

500

600

700

800

L2
 c

ac
he

 m
is

se
s

(*
1E

6)
 Cilk-a CATS

(a) L2 cache misses of SOR-ub

1024 2048 3072 4096 5120 6144 7168 8192
0

100

200

300

400

500

600

L3
 c

ac
he

 m
is

se
s

(*
1E

6)

 Cilk-a CATS

(b) L3 cache misses of SOR-ub

Figure 12. L2 and L3 cache misses of SOR-ub with different input
data sizes.

FFT Queens Mandelbrot GA Knapsack
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

 Cilk-a CATS

Figure 13. Performance of CPU-bound applications in Cilk-a and
CATS.

works either need extra user-provided information or are not gen-
eral enough for MSMC architectures.

In [27], MTS (Multi-Threaded Shepherds) was proposed to re-
duce cache misses in MSMC architecture. In MTS, when all the
cores in a socket are free, the head core of the socket steals a batch
of tasks from other sockets. However, MTS cannot ensure tasks ex-
ecuted by cores in the same socket have shared data, and thus can-
not reduce shared cache misses in MSMC. In [4], CONTROLLED-
PDF was proposed to reduce cache misses in single-socket multi-
core architecture. The scheduler divided nodes of a DAG into L2-

supernodes that contain data fit for the shared L2 cache. By execut-
ing L2-supernodes sequentially, the cache misses can be reduced.
The scheduler needed users to provide space complexity function
of the executed program and was only applicable to single-socket
multi-core architecture. Also the paper did not evaluate the pro-
posed scheduler through experiment. In [33], a less reused cache
filter was proposed to filter out the less reused data so that the fre-
quently reused data can stay in the cache.

Based on page-coloring technique, many works enable pro-
grammers to manage shared cache explicitly. In [28], a cache par-
titioning method was proposed. Based on the method, a cache con-
trol tool is implemented so that users can control the partitioning of
cache. In [14], ULCC was proposed to explicitly manage and op-
timize last level cache usage by allocating proper cache space for
different data sets of different threads. Although programmers may
improve their programs by managing last level cache , the manage-
ment is burdensome for programmers. In contrast, CATS can im-
prove the last level cache (L3) performance of memory-bound ap-
plications automatically without extra user-provided information.

Cache-oblivious algorithms, which can achieve good cache per-
formance by tuning the parallel programs carefully [6, 15, 31], were
used in a parallel cache-oblivious (PCO) model [5]. Based on the
PCO model, the authors described a scheduler to balance the cost of
the cache misses across the processors. However parallel programs
need to satisfy many restrictions so that the scheduler can perform
efficiently. Especially, the paper did not really implement the PCO
model and did not evaluate the model through experiment.

Task-stealing is popular for automatic load balancing inside
parallel applications due to its high performance. Many works have
been done on its adaption and improvement [10, 20–22, 26, 32].

There are also some works aiming to reduce cache misses in
task-stealing on parallel architectures. In [1], a theoretical bound on
the number of cache misses for random task-stealing was presented
and a locality-guided task-stealing algorithm was implemented on
a single-socket SMP. In [13], the authors analyzed the cache misses
of algorithms using random task-stealing, focusing on the effects of
false sharing. In [12], cache behaviors of task-stealing and a parallel
depth-first scheduler were compared and analyzed on a multi-core
simulator that has shared L2 caches among cores. It was proposed
to promote constructive cache sharing through controlling task
granularity. However, the above studies did not take the MSMC
architecture into consideration, and thus did not target the reduction
of shared cache misses as CATS does.

In [29], PWS (Probability Work-Stealing) and HWS (Hierar-
chical Work-Stealing) were proposed to reduce communications
among different computers for hierarchical distributed platform. In
PWS, processors had higher probability to steal tasks from pro-
cessors in the same computer. HWS used a rigid boundary level
to divide tasks into global tasks and local tasks which are similar
to inter-socket tasks and intra-socket tasks in CATS. However, the
boundary level in HWS must be given by users manually. Apart
from their difference from CATS, it is also worth noting that PWS
and HWS were proposed for reduction of communications in dis-
tributed environments.

In [11], a task-stealing scheduler, called CAB, is proposed to
reduce shared cache misses in MSMC. Similar to HWS, CAB
used a rigid boundary level to divide tasks into global tasks and
local tasks. Though the boundary level is calculated at run-time,
users have to provide a number of command line arguments for the
scheduler to calculate the boundary level. If the arguments are not
correct, the performance of applications may degrade seriously. In
addition, CAB is not as adaptive as CATS since it cannot work with
irregular and unbalanced execution DAGs that CATS works with.

6. Conclusions
Traditional task-stealing schedules tasks randomly to different
cores. Although the random scheduling works efficiently in multi-
core processor, it tends to pollute shared cache in MSMC architec-
tures. To solve the problem, we have designed and implemented the
CATS scheduler that requires no extra user information. Based on
features of parallel programs, CATS uses an online DAG partitioner
to divide execution DAG into inter-socket tier and intra-socket tier
based on profiling information that is collected during the first
iteration of the program. Furthermore, by scheduling tasks from
an intra-socket subtree within the same socket, the shared cache
misses are reduced significantly. Experimental results demonstrate
that CATS can achieve up to 74.4% performance gain for memory-
bound applications compared with random task-stealing and the
extra overhead of CATS for CPU-bound applications is negligible.

One potential avenue of future work is to explore task-stealing
in asymmetric architectures and design a special task-stealing
scheduler to schedule tasks with different features onto different
cores optimally in order to better utilize the system resources. An-
other promising future research direction is to optimize instruction
caches by schedule tasks that execute the same instructions onto
the same core.

References
[1] U. Acar, G. Blelloch, and R. Blumofe. The data locality of work

stealing. Theory of Computing Systems, 35(3):321–347, 2002.

[2] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Mas-
saioli, X. Teruel, P. Unnikrishnan, and G. Zhang. The design of
openmp tasks. IEEE Transactions on Parallel and Distributed Sys-
tems, 20(3):404–418, 2009.

[3] R. Azimi, M. Stumm, and R. Wisniewski. Online performance anal-
ysis by statistical sampling of microprocessor performance counters.
In Proceedings of the 19th annual international conference on Super-
computing, pages 101–110. ACM, 2005.

[4] G. Blelloch, R. Chowdhury, P. Gibbons, V. Ramachandran, S. Chen,
and M. Kozuch. Provably good multicore cache performance for
divide-and-conquer algorithms. In Proceedings of the nineteenth an-
nual ACM-SIAM symposium on Discrete algorithms, pages 501–510.
Society for Industrial and Applied Mathematics, 2008.

[5] G. Blelloch, J. Fineman, P. Gibbons, and H. V. Simhadri. Scheduling
irregular parallel computations on hierarchical caches. In Proceedings
of the 20th ACM Symposium on Parallel Algorithms and Architectures,
San Jose, California, June 2011.

[6] G. Blelloch, P. Gibbons, and H. Simhadri. Low depth cache-oblivious
algorithms. In Proceedings of the 22nd ACM symposium on Paral-
lelism in algorithms and architectures, pages 189–199. ACM, 2010.

[7] R. D. Blumofe. Executing Multithreaded Programs Efficiently. PhD
thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Sept. 1995. MIT Laboratory
for Computer Science Technical Report MIT/LCS/TR-677.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime sys-
tem. Journal of Parallel and Distributed computing, 37(1):55–69,
Aug. 1996.

[9] D. Butenhof. Programming with POSIX threads. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 1997.

[10] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In Pro-
ceedings of the seventeenth annual ACM symposium on Parallelism in
algorithms and architectures, page 28. ACM, 2005.

[11] Q. Chen, Z. Huang, M. Guo, and J. Zhou. CAB: Cache-aware Bi-tier
task-stealing in Multi-socket Multi-core architecture. In 40th Interna-
tional Conference on Parallel Processing, Taipei, Taiwan, 2011. IEEE.

[12] S. Chen, P. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G. Blel-
loch, B. Falsafi, L. Fix, N. Hardavellas, T. Mowry, et al. Scheduling
threads for constructive cache sharing on CMPs. In Proceedings of the

nineteenth annual ACM symposium on Parallel algorithms and archi-
tectures, page 115. ACM, 2007.

[13] R. Cole and V. Ramachandran. Analysis of Randomized Work Steal-
ing with False Sharing. ArXiv e-prints, Mar. 2011.

[14] X. Ding, K. Wang, and X. Zhang. ULCC: a user-level facility for
optimizing shared cache performance on multicores. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 103–112, 2011.

[15] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In 40th Annual Symposium on Foundations of
Computer Science, pages 285–297, New York, Oct. 17–19 1999.

[16] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation
of the Cilk-5 multithreaded language. In Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Language Design and
Implementation, pages 212–223, Montreal, Canada, June 1998. ACM.

[17] A. Gerasoulis and T. Yang. A comparison of clustering heuristics
for scheduling directed acyclic graphs on multiprocessors. Journal
of Parallel and Distributed Computing, 16(4):276–291, 1992.

[18] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel
programming with the message passing interface. MIT Press, 1999.

[19] Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and help-first
scheduling policies for async-finish task parallelism. In IPDPS’09:
Proceedings of the 2009 IEEE International Symposium on Parallel
and Distributed Processing, pages 1–12. IEEE Computer Society,
2009.

[20] Y. Guo, J. Zhao, V. Cave, and V. Sarkar. Slaw: a scalable locality-
aware adaptive work–stealing scheduler. In the 24th IEEE Interna-
tional Parallel and Distributed Processing Symposium, 2010.

[21] D. Hendler, Y. Lev, M. Moir, and N. Shavit. A dynamic-sized non-
blocking work stealing deque. Sun Microsystems, Inc. Technical Re-
ports; Vol. SERIES13103, page 69, 2005.

[22] D. Hendler and N. Shavit. Non-blocking steal-half work queues. In
Proceedings of the twenty-first annual symposium on Principles of
distributed computing, page 289. ACM, 2002.

[23] D. Lea. A Java fork/join framework. In Proceedings of the ACM 2000
conference on Java Grande, pages 36–43. ACM, 2000.

[24] J. Lee and J. Palsberg. Featherweight X10: a core calculus for async-
finish parallelism. In Proceedings of the 15th ACM SIGPLAN sympo-
sium on Principles and practice of parallel computing, pages 25–36.
ACM, 2010.

[25] C. Leiserson. The Cilk++ concurrency platform. In Proceedings of the
46th Annual Design Automation Conference, pages 522–527. ACM,
2009.

[26] M. M. Michael, M. T. Vechev, and V. A. Saraswat. Idempotent work
stealing. In Proceedings of the 14th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 45–54. ACM,
2009.

[27] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, and J. F. Prins. Schedul-
ing task parallelism on multi-socket multicore systems. In Proceed-
ings of the 1st International Workshop on Runtime and Operating Sys-
tems for Supercomputers, ROSS ’11, pages 49–56. ACM, 2011.

[28] S. Perarnau, M. Tchiboukdjian, and G. Huard. Controlling cache
utilization of hpc applications. In Proceedings of the international
conference on Supercomputing, pages 295–304. ACM, 2011.

[29] J.-N. Quintin and F. Wagner. Hierarchical work-stealing. In Proceed-
ings of the 16th international Euro-Par conference on Parallel pro-
cessing: Part I, EuroPar’10, pages 217–229. Springer-Verlag, 2010.

[30] J. Reinders. Intel threading building blocks. O’Reilly, 2007.

[31] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel. Cache oblivious
parallelograms in iterative stencil computations. In Proceedings of
the 24th ACM International Conference on Supercomputing, ICS ’10,
pages 49–59, 2010.

[32] L. Wang, H. Cui, Y. Duan, F. Lu, X. Feng, and P. Yew. An adaptive task
creation strategy for work-stealing scheduling. In Proceedings of the
8th annual IEEE/ACM international symposium on Code generation
and optimization, pages 266–277. ACM, 2010.

[33] L. Xiang, T. Chen, Q. Shi, and W. Hu. Less reused filter: improving
l2 cache performance via filtering less reused lines. In Proceedings of
the 23rd international conference on Supercomputing, pages 68–79.
ACM, 2009.

[34] J. Zhang, Z. Huang, W. Chen, Q. Huang, and W. Zheng. Maotai:
View-Oriented Parallel Programming on CMT processors. In 37th In-
ternational Conference on Parallel Processing, pages 636–643. IEEE,
2008.

