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Abstract

Data races hamper parallel programming and threaten the
reliability of future software. This paper proposes a data
race prevention scheme, which can prevent data races in
the View-Oriented Parallel Programming (VOPP) model.
VOPP is a novel shared-memory data-centric parallel pro-
gramming model, which uses views to bundle mutual ex-
clusion with data access. We have implemented the data
race prevention scheme with a memory protection mecha-
nism. Experimental results show that the extra overhead
of memory protection is trivial in our applications. The
performance is evaluated and compared with modern pro-
gramming models such as OpenMP and Cilk.

1 Introduction

Parallel programming has become inevitable with the ad-
vent of multicore and chip-multithreading (CMT) tech-
nologies [30]. These technologies allow multiple proces-
sors to be packed into a chip in a single computer, which
often provides shared memory and cache. However, par-
allel programming with shared memory can be prone to
errors such as data race, which is difficult to debug due
to its non-determinism and thus can severely affect pro-
grammability and software reliability.

In a parallel multithreaded computation, a data race
occurs if concurrent threads access the same memory lo-
cation without mutual exclusion primitives such as locks,
and at least one of the threads writes to the location.
There have been many studies on debugging data races.
Some perform a post-mortem analysis based on pro-
gram execution traces [8, 11, 14, 23, 24], while oth-
ers perform on-the-fly analysis during program execu-
tion [2, 10, 22, 29]. Among modern shared-memory par-
allel programming models [9, 25, 26, 28], only Cilk++ [9]
provides a data race detector called Cilkscreen [2, 9, 19].

Even though race detectors can help debug some data
races, they often have the following problems.

• Race detectors are often expensive to run, both in
terms of computation and memory space. For ex-
ample, Cilkscreen can take up to 30 times the nor-
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mal execution time of the debugged program to run
and the memory footprint can be “several times” the
memory footprint of the original application [9].

• Race detectors can only detect data races for one
given input of a program. If data races do not occur
when the program is run with a given input, this
does not imply the program is data race free. The
reason is that a different input may result in threads
being executed in different order, and the resultant
interaction may cause data races.

• To a novice programmer, race detectors can be dif-
ficult to use. For example, Cilkscreen gives a de-
tailed trace of memory addresses and their associated
function names and line numbers, which can be very
scary and confusing to inexperienced programmers.
In addition, this trace is of little help to program-
mers about the dynamic nature of the data races,
e.g. when and how the data races happen.

In this paper, instead of data race detection, we pro-
pose a data race prevention scheme, which can prevent
data races from occurring in the first place. This scheme
is implemented in our View-Oriented Parallel Program-
ming (VOPP) model [15, 38]. In VOPP, shared data
is partitioned into views. A view is a set of memory
units (bytes or pages) in shared memory. Each view,
with a unique identifier, can be created, merged, or de-
stroyed at any time in a program. Before a view is ac-
cessed (read or written), it must be acquired (e.g. with
Vpp acquire view); after the access of a view, it must be
released (e.g. with Vpp release view). The most impor-
tant property for views is that they do not intersect with
each other (refer to [15, 38] for details).

VOPP is a data-centric programming model [3, 7, 35],
which bundles mutual exclusion and data access together.
With data-centric programming, the programmer only
considers which data to access atomically, instead of the
issues like mutual exclusion and data race. Accordingly,
VOPP has the following advantages.

First, programmers are relieved from data race issues.
VOPP requires that shared data of a program be parti-
tioned into non-overlapping views according to the shared
pattern of data. Since the partitioning of data is decided
by the programmer as part of the parallel programming,
the parallel algorithm can be finely tuned through careful
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view allocation. Once views are allocated, the program-
mer is only concerned about which view (data) will be ac-
cessed, instead of worrying about the data races and mu-
tual exclusion in lock-based programming. When a view
is acquired, mutual exclusion is automatically achieved,
so it is not possible for other processes to access the view
at the same time. If a view is accessed without being
acquired, either the programmer can be notified of the
problem by the compiler with some VOPP related sup-
port, or the run-time system can report the problem with
the support of the underlying virtual memory system, as
we will describe in Section 2.

Second, VOPP encourages reduction of unnecessary
sharing and enables high performance. We argue that
shared memory is and will be a critical resource that needs
to be used with care. As we know, shared memory/cache
is and will still be a bottleneck in parallel computers [12],
though memory space will keep increasing. The philoso-
phy behind VOPP is to discourage data sharing through
view allocation, rather than automatic sharing as in other
shared memory programming models. Every time a view
is created, the programmer is given a chance to justify
if this sharing of data is necessary. It is worthwhile to
spend time on careful view partitioning in order to reduce
unnecessary data sharing.

Third, VOPP is portable over a range of parallel com-
puters and can hide the differences of memory architec-
tures. A view can be implemented efficiently on both
distributed memory and shared memory, and can even be
prefetched into the cache [38]. We have efficiently imple-
mented VOPP on both cluster computers and multi-core
computers [16, 17, 38], which is not easily attainable for
programming models such as OpenMP and Cilk.

Fourth, VOPP enables optimizations such as prefetch-
ing. Since the base address and size of a view are known at
view allocation, when a view is acquired, VOPP can pass
the information to the system which can prefetch the view
into the cache. Experiments show that prefetching with
helper threads can significantly improve the performance
of memory access [18, 21, 38].

Finally, VOPP is language independent. It proposes
a general idea regarding how to use shared memory for
inter-process communications. Any language can apply
this idea of view partitioning. For example, for object-
oriented languages, view classes can be defined and their
instances can be created for inter-process communica-
tions. In this paper, we use the C language as an example
to demonstrate the idea and performance of VOPP.

The rest of this paper is organized as follows. Sec-
tion 2 describes a data race prevention scheme that can
eliminate data races in VOPP. In Section 3, we briefly
introduce the advanced features of Maotai 2.0 for improv-
ing programmability and performance. Maotai 2.0 is our
up-to-date implementation of VOPP on CMT computers.
Section 4 presents the performance evaluation of Maotai
2.0. Finally, our future work is suggested in Section 5.

2 Data Race Prevention

In VOPP, shared data is defined through views. Unlike
most shared memory parallel programming models, vari-
ables are private to a process by default in VOPP. Shared
objects must be explicitly defined as “views”.

Views can be created, destroyed, merged, or resized,
but a process must acquire a view (read-only or read-
write) before accessing it and must release it after finishing
with the view. VOPP adopts the Single-Writer Multiple-
Reader (SWMR) model. At any given time, a view can
either be read/written by one process or allow read-only
access to multiple processes. In our current implemen-
tation, a view uses a contiguous memory space to store
shared variables. Below is a simple example of VOPP in
C.

1 typedef struct {int a[ARRAY_SIZE];

2 int result;} Foo;

3 Foo *ptr;

4 if (0 == Vpp_proc_id) {

5 /* master allocates view 0 with

6 type SWV, which is a shared object

7 with "Foo" type */

8 Vpp_alloc_view(0, sizeof(Foo), SWV);

9 }

10 Vpp_barrier();

11 ...

12 ptr = Vpp_acquire_view(0);

13 ptr->result += do_work(ptr->a);

14 Vpp_release_view(0);

15 ...

As illustrated in the above example, if a data structure
should be shared by multiple processes, a view has to be
created for it with Vpp alloc view. For exclusive access
to the view, the view type is SWV, which means “Single
Writer View”. However, we also provide other advanced
views to enhance the programmability and flexibility of
VOPP (refer to Section 3).

If a process wants access to a view, the view must
be acquired with Vpp acquire view (or Vpp acquire Rview
for read-only access). The view must be released with
Vpp release view after accessing it.

2.1 Implementation

In our data race prevention scheme, data races are pre-
vented by a memory protection mechanism available in
most UNIX systems. All views are initially protected from
access using system calls such as mprotect(). mprotect()
can deny access to a page, or allows read-only access to a
page, or allows read/write access to a page. We use this
mechanism to prevent a view from illegal accesses. Only
after a view is acquired is a process allowed to access the
memory pages of the view via mprotect(). When a view
is released, the process is again denied access to the view.

If a process accesses a view before Vpp acquire view or
after Vpp release view, the pages of the view would not
have the necessary access permission and thus a segmen-
tation fault will occur. Our system will handle the fault,
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send a warning message to the programmer that a view
is accessed without acquisition, and quit the program ex-
ecution.

In this way, a view can either be written to by one
process or read by multiple processes at a time. Pro-
grammers do not need to worry about the data race bugs.
If a view is accessed by calling Vpp acquire view, mutual
exclusion of the view access is automatically done by the
system. If a view is accessed without view acquisition, a
segmentation fault will occur, and the system will alert
the programmer about which view is accessed without
acquisition. The programmer can easily fix the bug by
inserting Vpp acquire view and Vpp release view into the
faulted code section.

The extra cost of this data race prevention scheme is
the overhead of the memory protection. In our VOPP
implementation Maotai 2.0, this cost is very low. On a
Sun T2000 Server equipped with a 1GHz UltraSPARC
T1 processor [31], micro-benchmarking results demon-
strate that the overhead of memory protection added
to the view primitives is generally very low (around 2-
3µs). The exception is Vpp acquire view, requiring up
to 35µs extra, which covers the essential overhead of the
memory protection mechanism(see Table 1). Note that
Vpp acquire Rview and Vpp release Rview means acquir-
ing and releasing views as read-only.

Table 1: Breakdown of view primitive costs (in µs)
Primitive no prot prot cost
Vpp acquire view() 3.14 39.08 35.94
Vpp acquire Rview() 3.60 6.32 2.72
Vpp release view() 1.91 4.54 2.63
Vpp release Rview() 1.99 4.64 2.65

However, in our application benchmarks, this over-
head does not cause noticeable difference in application
speedup. Table 2 shows the speedups (at 32 processes) of
our applications with and without memory protection in
Maotai 2.0. We have six benchmark applications: Succes-
sive Over-Relaxation (SOR), Gaussian Elimination (GE),
Integer Sort (IS), Neural Network (NN), Mandelbrot, and
Mergesort, which typically represent a wide variety of par-
allel applications. For details of these applications, refer
to Section 4. As we can see from Table 2, in all 32-process
benchmark cases, the difference is around 0.5%. There-
fore, the overhead introduced by data race prevention is
trivial.

Table 2: Effects of memory protection on benchmark
application speedups with 32 processes / threads

Application no prot prot
SOR 16.82 16.77
GE 22.41 22.36
IS 16.51 16.47
NN 16.98 16.92
Mandelbrot 17.80 17.79
Mergesort 12.52 12.50

One issue about the implementation is that memory
protection such as mprotect is page-based. Therefore, in
order to protect view data properly, memory space allo-
cated to a view is aligned by pages. This can result in
memory space wastage. Table 3 shows the requested and
actual sizes of the memory space allocated by VOPP in
our benchmark applications. The page size is 8kB and
32 processes are used when the data of the table are col-
lected. From this table, it can be seen that some appli-
cations like GE and Mandelbrot, which have many views
that do not exactly fit a page, have a higher proportion
of memory wastage (up to 51%), though other applica-
tions have less than 7% wastage. However, this memory
wastage is much smaller than the memory footprint of
race detectors, which can be ”several times” the memory
footprint of the original applications.

Table 3: Requested vs actual VOPP shared size (in
Kbytes) in different applications

Algorithm Requested Actual Wasted Percent

wasted

SOR 4,097,024 4,194,304 97,280 2.32

GE 64,016,004 98,328,576 34,312,572 34.9
IS 4,194,304 4,194,304 0 0

NN 271,612 294,912 23,300 7.90
Mandelbrot 2,000,000 4,096,000 2,096,000 51.2

Mergesort 1,600,001,280 1,600,274,432 273,152 0.0171

Fortunately, with architectural support of variable-size
pages [6, 37], this memory wastage can be greatly reduced.

2.2 Related Work

Shared memory systems have different approaches to the
data race issue. In most systems (such as OpenMP [26],
Cilk [32], PThread [25] and UPC [33]), locks are not asso-
ciated with shared objects and programmers are respon-
sible for arranging locks properly to prevent data races,
therefore these systems are prone to data races and dead-
locks caused by programming errors.

Transactional memory systems are very convenient for
parallel programming. However, its major goal is to guar-
antee atomicity of memory accesses without locking, in-
stead of addressing the data race issue. It rolls back one
or more conflicting transactions when atomicity may be
violated. Therefore, it never removes data races. Also
live-lock can be a new issue with transactional memory
(all competing processes repeatedly roll back and make
no progress).

Deterministic Parallel Java (DPJ) [4, 5] is an object-
oriented shared-memory concurrent model based on a
Java language extension. In DPJ, the compiler uses the
“type and effect” system on classes and methods to stat-
ically check whether two concurrent code blocks can be
executed concurrently, if not, then the tasks will be run
serially instead in the order they are listed to ensure de-
terminancy. The concept of “region” in DPJ is similar to
“view” in VOPP. Both models bundle access management
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into shared objects and relieve programmers from the re-
sponsibility of manually setting locks to prevent data race.
However, the difference is that DPJ avoids the data race
problem through falling back to serial execution, while
VOPP detects the data races at runtime and helps the
programmer fix the bugs.

3 Advanced Features in Maotai
2.0

In addition to data race prevention, Maotai 2.0 also offers
primitives for acquiring multiple views in order to avoid
deadlocks, producer/consumer views, and system queues
to enhance programmability and performance. These fea-
tures are discussed below.

3.1 Deadlock Avoidance

Similar to data race, deadlock is another pain that can
happen easily but is difficult to debug in shared-memory
parallel programming. In VOPP, deadlock can happen if
views are acquired in a nested way and different processes
acquire them in different orders.

To avoid deadlocks due to acquiring multiple views in
different orders, Maotai 2.0 offers primitives for acquiring
multiple views. Programmers can list all views to be ac-
quired with these primitives which will acquire the views
in a specific, same order. In this way, there is no chance
for deadlocks to happen.

Below is an example illustrating the use of the primi-
tives for acquiring multiple views:

1 /* acquire access to both view 0 and 1 */

2 Vpp_acquire_multiviews(0, &ptr0, 1, &ptr1);

3 ptr0->result += compute0(ptr0->a, ptr1->a);

4 ptr1->result += compute1(ptr1->a, ptr0->a);

5 Vpp_release_view(); /* release all views */

In the above example, the process acquires both view
0 and 1 with Vpp acquire multiviews which puts the view
base addresses into ptr0 and ptr1. Finally the process
releases both views with Vpp release view.

Note that the above solution cannot eliminate dead-
locks from VOPP programs as the data race preven-
tion scheme does data races. There are two rea-
sons: first, the programmer may choose not to use
Vpp acquire multiviews for nested view acquisition; sec-
ond, even if the programmer would like to use the primi-
tive, it is difficult to know which views to acquire in ad-
vance in some programs where inner views can only be
decided after the outer views are processed.

Nevertheless, the above primitives provide an avenue
for novice programmers to avoid unnecessary deadlocks.

3.2 Producer/Consumer View

A Producer/Consumer View (PCV) is provided to allow
direct expression of producer/consumer relationships in

parallel algorithms. Traditionally barriers are used to
synchronize the producers and the consumers in shared
memory parallel programming. With the introduction of
PCV, programming with producer/consumer problem is
more straightforward and thus increases programmabil-
ity. In addition, PCV can avoid expensive barriers, which
makes all processes wait and whose cost would increase
with increasing number of processes.

PCV is implemented as a queue. The producer en-
queues a new version of the view by acquiring the view,
producing the data, and finally releasing the view. The
consumer dequeues a version of the view by acquiring
read-only access to the view. After it finishes with the
view, it releases the view whose buffer may be recycled
by the producer.

In our experiments, the SOR and GE benchmark ap-
plications demonstrate that PCVs give a better speedup
than barrier based implementations. Figure 1 and 2 shows
the speedup difference between applications using barriers
and those using PCVs.
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Figure 1: Speedup of SOR in VOPP

Figure 1 shows the speedup of SOR which uses PCV
to improve its performance. Compared with its barrier
implementation, the improvement of speedup is 11.2% at
32 processes.
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Figure 2: Speedup of GE in VOPP

Figure 2 shows the speedup of GE which uses PCV
to improve its performance. Compared with its barrier

4



implementation, the improvement of speedup is 4.2% at
32 processes.

3.3 System Queues

System queues are provided in Maotai 2.0 to store view
IDs. This facility allows easy implementations for task
queues. Task queues are good for load balancing paral-
lel applications (e.g. Mandelbrot and tree search algo-
rithms), where the data for each job or node can be put
in a view and its ID is simply enqueued in a system queue
for other processes to work on.

In Maotai 2.0, the enqueue and dequeue calls are effi-
cient. In a microbenchmark test on a Sun T2000 server,
an enqueue call only takes 2.65µs and a dequeue call takes
2.56µs.

4 Performance Evaluation with
Other Models

In this section, we compare the performance of Maotai 2.0
with other modern shared memory parallel programming
models OpenMP and Cilk. Our benchmark applications
include Successive Over-Relaxation (SOR), Integer Sort
(IS), Gaussian Elimination (GE), Neural Network (NN),
Mandelbrot and Mergesort. The experiments are carried
out on a Sun T2000 server with an UltraSPARC T1 pro-
cessor and 16GB memory. The UltraSPARC T1 has eight
cores, each of which is clocked at 1GHz and supports four
hardware threads. In total, the UltraSPARC T1 proces-
sor supports up to 32 hardware threads [31]. Linux ker-
nel 2.6.24-sparc64-smp and the compiler gcc-4.4 are used
during benchmarking. The benchmark applications are
implemented on Maotai 2.0, Cilk-5.4.6 [32], and OpenMP
3.0 [26], respectively. All programs are compiled with the
optimization flag “-O2”. In each case, speedup is mea-
sured against the serial implementation of the benchmark
algorithm. The elapsed time calculated in each case ex-
cludes initialization and finalization costs, because they
are one-off and are difficult to measure within the pro-
gram in models that involve source-translation, such as
Cilk and OpenMP. Instead, startup and finalization times
for each model are measured separately. Runtime of func-
tions that are irrelevant to the original application, such
as generation of random sequences and result-verification,
are also excluded.

Successive Over-relaxation (SOR) is a multiple-
iteration algorithm where each element is updated by the
values of the neighbouring elements from the last itera-
tion. In this experiment, the implementation is adapted
from [38]. Matrix size is set to 8000 ∗ 4000 and 40 itera-
tions are performed.

The Integer Sort (IS) algorithm used in this experiment
is based on the NPB version [34]. This is a counting-
sort algorithm. In this experiment, the problem size is
226 integers with a Bmax of 215 and 40 repetitions are
performed.

The Gaussian Elimination (GE) implementation from
[38] is used in this experiment and the matrix size is set
to 4000 ∗ 4000.

The parallel Neural Network (NN) algorithm is based
on [27]. This algorithm trains a back-propagation neural
network in parallel using a training data set. In this ex-
periment, the size of the neural network is set to 9 * 40 *
1 and the number of epochs is set to 200.

The Mandelbrot algorithm is embarassingly-parallel.
However, the workload of pixels is extremely uneven, and
thus requires a load-balancing mechanism to prevent pro-
cess starvation [13, 36]. In this experiment, the size of
the screen is set to 500 * 500, the maximum number of
iterations is set to 500 and each pixel is calculated 5000
times. The maximum number of processes / threads is
set to eight for this experiment because hyperthreading
relies on memory latency. Since this application has very
few memory accesses, there is little speedup when more
processes / threads than the number of CPU cores are
used (The UltraSparc T1 has eight cores).

The parallel Mergesort algorithm is recursive [20, 32]
and is implemented verbatim in Cilk and OpenMP to test
performance of the newly-available task-parallelism fea-
ture in OpenMP [1]. The array consists of 200 million
integers. This algorithm is converted to the iterative ver-
sion for VOPP. The iterative version requires the number
of processes to be a power of 2. This version first divides
the array equally between the processes and each process
sorts its own subarray. Then the merge procedure largely
models the recursive version of the parallel merge algo-
rithm.

Since the UltraSPARC T1 has only one floating-point
unit, all floating-point calculations in the above algo-
rithms are converted to integer calculation to avoid the
bottleneck at the floating-point unit. Removal of floating
point calculations is done in all implementations and does
not affect the scalability of the algorithm or the fairness
of the comparison.

4.1 Experimental Results

The experimental results are illustrated with speedup
curves. For each application, we give its speedup curves
on Maotai 2.0, Cilk, and OpenMP. In the discussion be-
low, n refers to the number of processes / threads.

Speedup is calculated by:

speedup =
timeserialimplementation

timeparallelimplementation

(1)

To ensure fair comparison, the same serial implemen-
tation of each benchmark application is used as a baseline
for calculating speedups of all parallel programming mod-
els.

For SOR (Figure 3), Maotai 2.0 has the best perfor-
mance. At n = 32, Maotai 2.0 is 13.6% better than Cilk
and 17.9% better than OpenMP.
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Figure 3: Speedup of SOR

For GE (Figure 4), Maotai 2.0 again has the highest
speedup. At n = 32, Maotai 2.0 is 7.4% better than Cilk
and 33% better than OpenMP.
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Figure 4: Speedup of GE

In IS (Figure 5), there are less variations in speedups
in different models. However at n = 32, Maotai 2.0 is 5%
faster than Cilk and 15% faster than OpenMP.
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Figure 5: Speedup of IS

In NN (Figure 6), all models have similar speedups.
Maotai 2.0 is 3.1% faster than OpenMP, but it is 1.8%
slower than Cilk.
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Figure 6: Speedup of NN

In Mandelbrot (Figure 7), there are relatively little dif-
ferences between speedups of different models. At n = 8,
Maotai 2.0 is 0.8% faster than Cilk and 7.2% faster than
OpenMP.
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Figure 7: Speedup of Mandelbrot

For Mergesort, Figure 8 shows speedup of Maotai 2.0 is
relatively slower. We will address this issue in Section 4.2.
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Figure 8: Speedup of Mergesort

Note that, in the above collected results, the standard
deviations of the elapsed time at n = 32 for Maotai 2.0 and
Cilk cases are less than 0.1s, but the standard deviations
of the elapsed time for OpenMP are between 0.2 to 0.5s,

6



which may be due to the random nature of the OpenMP
task scheduler.

Table 4 presents the startup and finalization time of
each system. As expected, startup and finalization costs
for thread-based models including Cilk and OpenMP are
lower than process-based system like Maotai 2.0.

Table 4: Combined startup and finalization time (in
ms) for different number of processes/threads on a
Sun T2000 server

1 2 4 8 16 24 32
Cilk 2 2 2 2 2 2 2
OpenMP 2 2 2 2 2 2 2
Maotai 2.0 9 10 11 13 15 19 22
Serial 2

All thread-based models have the same combined
startup and finalization time as the serial version re-
gardless of the number of threads. Maotai 2.0 has a
startup/finalization cost of 9ms (at n = 1) and the cost
grows to 22ms at n = 32, almost linear to the num-
ber of processes. Despite Maotai 2.0 having a larger
startup/finalization overhead, the 22ms is still negligible
compared to the time consumed in n = 32 cases, which is
at least 10 seconds. Also the startup/finalization time in
Maotai 2.0 is only a one time event, therefore, this over-
head should have negligible effect on the speedup curves.

4.2 Discussion

The following is an analysis on why Maotai 2.0 performs
better or worse than other systems.

As we mentioned before, the producer/consumer view
(PCV) in Maotai 2.0 enhances both programmability and
performance of SOR and GE. In SOR, PCV is used to
pass boundary rows to neighbour processes, thus allowing
the natural expression of the message-passing relationship
without the use of barrier, which would hold up irrele-
vant processes. Apart from programmability, the resul-
tant performance gain is reflected in Figure 1, where the
PCV VOPP version is 11.2% faster than the barrier-based
SOR version.

Similarly in GE, PCV is used to broadcast the pivot
row and the swap index, which improves programmability
by mimicking the broadcasting semantics in the parallel
algorithm. Also the removal of barriers by PCV improves
the VOPP performance by 4.2% (Figure 2). Time is saved
by replacing lock and barrier primitives with a PCV prim-
itive.

Multiple-Program Multiple-Data (MPMD) models
such as Cilk/Cilk++ and OpenMP do not have barriers
because in this case, the parallel calculation part is conve-
niently expressed by parallel for-loop (or in case of Cilk,
spawn recursive task decomposition threads and sync at
end of parallel calculation) and the pivot part is run se-
rially. Synchronization is implicit in the parallel for-loop
construct, where tasks are forked at the beginning of the
loop and joined at the end of the loop, therefore these
fork-join actions are essentially barriers and have the simi-

lar overhead to the barriers in VOPP. In multiple-iterative
cases such as GE and SOR, the cumulative task scheduling
and synchroniation overheads can be considerable. There-
fore, the Maotai model would be more suited for these
problems.

Mandelbrot is an embarassingly-parallel algorithm.
This application demonstrates the slight performance ad-
vantage of the VOPP SPMD model, in which a task queue
is used to balance workload in the program, instead of us-
ing general runtime schedulers as in OpenMP and Cilk.
This result has also demonstrated that our implementa-
tion of the system queue is efficient.

In IS, the performance advantage seen in Maotai 2.0
over other models can be attributed to the split of global
keyden array into nproc views. In the global keyden
construction step, each process updates all global key-
den parts in the round-robin fashion, starting from the
proc idth part. Here, the SWMR view access pattern re-
moves the need for barriers for preventing data race due
to multiple processes updating an element simultaneously.
This removal of barriers can contribute to the performance
gain by the VOPP program.

In NN, since multiple items are updated by multiple
processes at the end of the iteration, barriers are still
used in the VOPP program. Therefore, it has the same
synchronization overhead of other models. However the
performance of Maotai 2.0 is still comparable to other
models, which shows that being data race free has little
impact on performance.

However, the SWMR model in VOPP does have its
limitations in cases where the access pattern changes in
every iteration. In those cases, view data must be copied
to a local buffer of a process, where the process works
on the data. After the data is processed, the view is ac-
quired again by the process and the results copied back
to the view. In our applications, Mergesort is such an
example. In Mergesort, the resultant excessive memory-
copying renders the implementation unscalable (Refer to
VOPP-SWV in Figure 8). For this application, VOPP
does trade off some programming convenience and perfor-
mance for data race prevention. However, Maotai 2.0 has
provided a Multiple Writer View (MWV) to offer the pro-
gramming convenience for experienced programmers. A
MWV is a view that can be accessed at different locations
simultaneously by multiple processes. Therefore, it is up
to the programmer to make sure there is no data race in
a MWV. In contrast to other programming models, the
data races of a MWV are confined inside the view should
they occur. This alternative MWV implementation allows
multiple processes to work directly on the view and avoid
memory copying. With MWV, the speedup of Merge-
sort in Maotai 2.0 is comparable to other shared-memory
models. Figure 8 shows, at n = 32, Maotai 2.0 (refer to
VOPP-MWV) is 1% faster than OpenMP, but 9 % slower
than Cilk.

Cilk performs very well in cases like Mergesort and NN.
This can be attributed to its recursive task decomposition
that ensures cache locality [20].
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The parallel for-loop in OpenMP allows easy specifi-
cation of data-parallelism. However, it would introduce a
task-scheduling cost, especially when the workload is fixed
and no load-balancing is required. The lower speedups of
GE, SOR and NN of OpenMP can be attributed to this
parallel for-loop overhead. Although Cilk++ cannot be
benchmarked in this experiment because it does not sup-
port sparc64-smp, its equivalent construct cilk for can also
have the similar task-scheduling overhead.

5 Conclusions and Future Work

Our data race prevention scheme based on views proves
to be efficient and adds little extra overhead to paral-
lel programming systems. Though there is some memory
wastage due to page alignment in the implementation,
architectural support for variable-size pages will signifi-
cantly reduce the wastage. Even with a fixed page size,
view constructs are useful to remove data races.

With the advanced features in Maotai 2.0, the per-
formance and programmability of VOPP are enhanced.
Though strict SWV views are rigid for some applications
like Mergesort, Maotai 2.0 offers MWV views to allow
programmers to fall back to traditional shared memory
programming, with the risk of data races that are con-
fined in a single MWV view.

Performance results demonstrate that Maotai 2.0 is
very competent among modern parallel programming
models, even with the unique data race prevention
scheme.

In the near future, we will investigate if this data race
prevention mechanism can be used for data race detection
as well. We would like to provide programmers an alter-
native debugging mode in which the memory protection
mechanism is used to detect data races. At runtime, the
programmers can choose to disable the data race preven-
tion mechanism if they are sure there is no data race, so
that the memory wastage in the prevention scheme can
be avoided at runtime.

We will also support more advanced views in VOPP.
One of them could be Transactional Memory View
(TMV). TMV is similar to a piece of transactional mem-
ory, except that the roll-back behavior is only applied to
the involved TMV, not to other memory objects. TMV
can help programmers to avoid deadlocks and locking
problems, in addition to the features of VOPP such as
data race free.
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