
View-Oriented Transactional Memory

K. Leung and Z. Huang
Department of Computer Science

University of Otago
Dunedin, New Zealand

Email:{kcleung;hzy}@cs.otago.ac.nz

Abstract—This paper proposes the View-Oriented Transac-
tional Memory (VOTM) model to seamlessly integrate locking
mechanism and transactional memory. The VOTM model
allows programmers to partition the shared memory into
“views”, which are non-overlapping sets of shared data objects.
The Restricted Admission Control (RAC) scheme can then con-
trol the number of processes accessing each view individually in
order to reduce the number of aborts of transactions. The RAC
scheme has the merits of both the locking mechanism and the
transactional memory. Experimental results demonstrate that
VOTM outperforms traditional transactional memory models
such as TinySTM by up to three times.

Keywords-View-Oriented Transactional Memory (VOTM),
transactional memory, deadlock, concurrency control, Re-
stricted Admission Control (RAC), View-Oriented Parallel
Programming (VOPP)

I. INTRODUCTION

Parallel programming is becoming mainstream since mul-
ticore CPUs have become pervasive. There is a pressing
need for parallel programming models to facilitate both
performance and convenience. Traditional lock-based pro-
gramming models can be made efficient but have tedious
programmability and are prone to errors such as deadlock.
New programming models based on transactional memory
are more convenient, but may suffer from low perfor-
mance [1, 2].

Traditionally locking [3, 4] is used for concurrency con-
trol, where multiple processes/threads1 have to access a
shared data object in an exclusive way. Atomic access to
a shared object is achieved through a locking mechanism.
This lock-based concurrency control is generally regarded
as pessimistic approach [5] where conflicts are resolved
before they are allowed to happen. Even though locking is
an effective mechanism to resolve conflicts, it could result
in the deadlock problem if multiple objects are locked in
different orders by multiple processes. Moreover, apart from
the deadlock problem, fine-grained locks are tedious for
programming, while coarse-grained locks often suffer from
poor performance due to lack of concurrency.

To avoid the deadlock problem as well as to increase con-
currency, Transactional Memory (TM) [6, 7] was proposed

1In the rest of the paper, we use “process” to mean both process and
thread for simplicity since they are identical in terms of concurrency control.

for shared-memory programming models. In TM, atomic
access to shared objects is achieved through transactions.
All processes can freely enter a transaction, access the
shared objects, and commit the accesses at the end of the
transaction. If there are access conflicts among processes,
one or more transactions will be aborted and rolled back.
TM will undo the effects of the rolled-back transactions
and restart them from the beginning. This transaction based
concurrency control is labelled as an optimistic approach
[8, 9] where it is assumed nothing will go wrong and if it
does go wrong deal with it later.

In terms of performance, both lock-based and TM-based
approaches have their own merits in different situations.
When access conflicts are rare, the TM-based approach has
little roll-back overhead and encourages high concurrency
since multiple processes can access different parts of the
shared data simultaneously. In this situation, however, the
lock-based approach has little concurrency due to the se-
quential access to the shared data, which results in low
performance. To increase concurrency and performance, the
programmer has to break the shared data into finer parts and
use a different lock for each part. This solution using fine-
grained locks often complicates the already-complex parallel
programs and could incur deadlocks.

On the other hand, when access conflicts are frequent,
the TM-based approach could have staggering roll-back
overheads and is not scalable due to a large number of aborts
of transactions. In such a situation, it is more effective to use
the pessimistic lock-based approach to avoid the excessive
operational overheads of transactions.

In this paper, we propose the novel View-Oriented Trans-
actional Memory (VOTM) paradigm that seamlessly inte-
grates the locking mechanism and transactional memory into
the same programming model. VOTM is designed based on
the generic principle of our previous View-Oriented Parallel
Programming (VOPP) model [10–12]. In VOTM, shared
data objects are partitioned into “views” by the programmer
according to the memory access pattern of a program. The
grain (size) and content of a view are decided by the
programmer as part of the programming task, which is as
easy as declaring a shared data structure or allocating a block
of memory space. Each view can be dynamically created,
merged, and destroyed. The most important property for

views is that they do not intersect with each other. Before
a view is accessed (read or written), it must be acquired;
after the access of a view, it must be released. This data-
centric model [13] bundles concurrency control and data
access together and therefore relieves the programmer from
controlling concurrent data access directly with either locks
or transactions. When a shared data (i.e. a view) is to be
accessed, the programmer just simply uses acquire view to
inform the system that the corresponding view is going to be
accessed. It is up to the system to decide whether the locking
mechanism should be adopted or a transaction should be
started for the concurrent access of the shared data.

In VOTM, we adopt the novel Restricted Admission
Control (RAC) scheme that can dynamically decide if the
locking mechanism or a transaction should be used for the
access of a view and thus seamlessly integrates the merits
of both the lock-based and the TM-based approaches.

In the RAC scheme, a set of shared objects (grouped as
a view using either static declaration or dynamic memory
allocation in VOTM) is restricted to be accessed by a
limited number of processes Q (called admission quota)
whose value ranges from 1 to the maximum number of
processes (NPROCS), depending on the contention between
the processes. The limited number of processes can be
statically specified in the program or dynamically adjusted
at runtime according to the contention situation, e.g., the
number of transactional aborts. When Q is 1, the processes
access the set of data objects sequentially as in the lock-
based approach. When Q equals NPROCS, the RAC scheme
behaves like the TM-based approach where any process is
allowed to start a transaction to access the data objects. How-
ever, when Q is greater than 1 but smaller than NPROCS,
only Q processes are allowed to access the data objects
concurrently through transactions. If there are already Q
processes accessing the data objects inside uncommitted
transactions, other processes are excluded from accessing
the set of data objects and have to wait until some existing
transactions commit. Furthermore, RAC can flexibly adjust
Q at runtime in order to achieve optimal performance, which
will be described in details in Section II-B.

A. Contributions of this paper

First, we usher in a new programming paradigm VOTM,
which enables programmers to achieve optimal performance
based on view partitioning while avoiding problems from
lock-based programming such as fine-grained locking and
deadlock. Complex data structures such as linked lists, trees,
and graphs can be simply placed into different views, but
efficient access to them is achieved through RAC.

Second, we propose the novel Restricted Admission Con-
trol (RAC) scheme that adapts flexibly to runtime contention
situations in order to achieve optimal performance for con-
current accesses to each view.

Third, we demonstrate the performance of VOTM is
much better than traditional TM and lock-based approaches
through experimental results.

The rest of the paper is organized as follows: Section
II will present the details of the VOTM model, the RAC
scheme, and the implementation; Section III will show
experimental results and performance evaluation; Section IV
will discuss related work and Section V concludes the paper.

II. THE VOTM PROGRAMMING MODEL AND
IMPLEMENTATION

VOTM is based on the philosophy of shared memory
partitioning. Since different shared data can have different
access patterns and contention levels, VOTM allows groups
of shared objects that are not required to be accessed
atomically to be put into different views, so that concurrency
control on each view can be separately optimized using the
RAC scheme (refer to Section II-B for more details).

This optimization cannot be achieved by traditional trans-
actional memory without grouping data objects into views.
For example, in VOTM a tree structure with thousands of
nodes can be put into one view, and a hash table can be
put into another view if they are not required to be accessed
atomically at the same time in an application. Suppose the
tree in the application has high contention, but the hash
table has low contention. The RAC scheme in VOTM would
quickly restrict the access to the tree to relieve its contention,
without restricting the number of processes accessing the
hash table. In this way, the system would continue to allow
maximal concurrent access to the hash table, though the
access to the highly-contentious tree is restricted. Therefore,
by putting the tree and the hashtable in different views, their
accesses are separately optimized, which cannot be achieved
by traditional transactional memory.

In addition, the RAC scheme also allows seamless inte-
gration of the locking mechanism and transactional memory
into the VOTM model. RAC can dynamically control the
admission quota Q of a view, or alternatively, Q can be man-
ually specified during view allocation. When Q is greater
than 1, a transaction starts when the process is admitted
to the view. However, when Q becomes 1, it is equivalent
to the lock mechanism, thus eliminating all transactional
overheads. In this way, programmers only need to partition
shared data into views according to the access patterns, but
leave concurrency control to RAC.

A. Programming interface

Figure 1 shows a C example to explain how to cre-
ate a view for a linked list in VOTM. In the example,
create view() creates a view for the linked list, and mal-
loc block() allocates a memory block from the view.

A VOTM code snippet for list insertion is shown in
Figure 2. Here the parameter node in the function points
to a node that is a memory block belonging to the view

2

1 typedef struct Node_rec Node;
2

3 struct Node_rec {
4 Node *next;
5 Elem val;
6 };
7

8 typedef struct List_rec {
9 Node *head;

10 } List;
11

12 List *ll_alloc(vid_type vid) {
13 List *result;
14 create_view(vid, size, 0);
15 result = malloc_block(vid, sizeof(result[0]));
16 acquire_view(vid);
17 result->head = NULL;
18 release_view(vid);
19 return result;
20 }

Figure 1. Code snippet of list allocation in VOTM

of the linked list. Compared with the sequential version of
the code snippet, the only extra code is the view primitives,
acquire view() and release view(), that demarcate view ac-
cess.

1 void ll_insert(List *list, Node *node, vid_type vid) {
2 Node *curr;
3 Node *next;
4

5 acquire_view(vid);
6

7 if (list->head->val >= node->val) {
8 /* insert node at head */
9 node->next = list->head;

10 list->head = node;
11 } else {
12 /* find the right place */
13 curr=list->head;
14 while (NULL != (next = curr->next) &&
15 next->val < node->val) {
16 curr = curr->next;
17 }
18 /* now insert */
19 node->next = next;
20 curr->next = node;
21 }
22 release_view(vid);
23 }

Figure 2. Code snippet of list insertion in VOTM

Deadlock can be avoided in VOTM if view acquisitions
are not nested. If two views need to be acquired in a
nested way, they can often be either put into the same
view initially or merged together dynamically. If views are
carefully partitioned, nested view acquisitions are rarely
needed in real applications. When nested view acquisitions
are needed, they can often be resolved in VOTM by merging
the involved views into one view.

A summary of the VOTM API is shown in Table I.

B. Restricted Admission Control (RAC) scheme

We implement the RAC scheme for every view. Each view
consists of memory blocks that may store an entire linked

list, tree or graph. Each view has an admission quota Q that
restricts the maximum number of processes accessing the
view concurrently. Before a view is accessed, the primitive
acquire view is used. If Q equals 1, acquire view is equiv-
alent to a lock acquisition. In this case, lock mechanism
is used instead of the transaction mechanism to avoid
transactional overheads. If Q is greater than 1, acquire view
will either start a new transaction or wait according to the
following RAC scheme.

Suppose a view has an admission quota Q. We assume
the current number of processes concurrently accessing the
view is P . When the view is acquired through acquire view,
RAC follows the steps below:

• Compare P with Q. If P is smaller than Q, increase P
by 1, start a new transaction, and return with success.

• If P equals Q, the calling process is blocked until P
becomes smaller than Q.

When the view is released through release view, RAC
executes the following steps:

• Try to commit the transaction. If the commit fails, abort
and roll back the transaction, decrease P by 1, and
reacquire the view as shown above.

• If the commit succeeds, decrease P by 1, and then
return with success.

Furthermore, RAC can dynamically adjust the admission
quota Q in the following way according to the contention
situation.

The admission quota Q of each view is initialized as the
maximum number of processes (NPROCS) if it is not set
statically at view creation time. RAC regularly checks the
contention situation of the view. The contention situation is
indicated by the number of aborts as well as the number of
successfully committed transactions that are related to the
view. If the number of aborts is high, the contention is usu-
ally high. However, high number of successful transactions
often indicates that the contention is not high enough to
affect the overall progress of the computation, even though
the number of aborts may be high in such a situation. There-
fore, we use the ratio between the number of aborts and the
number of successful transactions (aborts/successful tx)
to reflect the severity of the contention situation.

If this abort/success ratio is larger than MAX (currently
set to 8.0), the view is considered as highly contentious.
When this happens, RAC will relieve the contention of
the view by halving the admission quota Q of the view.
Then, the number of aborts and the number of successful
transactions will be reset in the view. This process can be
repeated periodically until Q reaches 1, in which case the
concurrency control is switched to the lock-based approach.
Then, the transaction mechanism is no longer used to access
the view and the abort/success ratio for the view concerned
is no longer checked.

Conversely, when Q is greater than 1 and the abort/success

3

Table I
VOTM API

void create view(int vid, size t size, int q) Creates a view with ID vid and size size. q is the maximum number of processes admitted
to this view. If q is less than 1, admission quota of this view will be dynamically
managed by RAC.

void *malloc block(int vid, size t size) Allocates a memory block with the specified size for the view vid. Returns the base
address of the allocated block.

void free block(int vid, void *ptr) Frees the memory block pointed by ptr from the view vid.
void destroy view(int vid) Destroys the view vid.
void brk view(int vid, size t size) Expands the memory space of the view vid by size.
void acquire view(int vid) Acquires read-write access to the view vid.
void acquire Rview(int vid) Acquires read-only access to the view vid.
void release view(int vid) Releases access to the view vid.

ratio is smaller than MIN (currently set to 1/8), the view
is considered as having low contention. Then, RAC will
increase concurrency by doubling Q. When Q is changed,
the numbers of aborts and successful transactions of the view
will be reset. This process will repeat periodically until Q
reaches NPROCS.

To eliminate cache flushing overheads on incrementing
the shared counters in the RAC metadata of the view, when
it is clear that access restriction to the view is unnecessary
because of following low contention condition:

• 20000 transactions are executed since Q is set to
NPROCS, and

• the abort/success ratio < MIN

The RAC mechanism will be disabled.
After the RAC mechanism of the view is disabled, access

to the view will no longer be restricted until the contention
situation of the view changes.

The choices of MAX and MIN are currently empirical.
Different TM algorithms may favor different values. For
example, the encounter-time locking TM algorithm used
in TinySTM aborts potentially-conflicting transactions early
to reduce wasted computation. Under the same contention
situation, this would result in higher abort/success ratio than
other TM algorithms such as commit-time locking used in
TL-2. Therefore, the same genuine high contention case
will have higher abort/success ratio for TinySTM than for
TL-2. Optimal MAX and MIN settings are dependent
on the underlying transactional memory system. Automatic
adjustment of these values is an interesting issue for further
research.

Frequent check of the abort/success ratio is costly since
a spinlock is used for multiple processes to access the
numbers, which would significantly increase the overhead
of RAC. Therefore, the periodic check is only triggered
under the condition when the sum of aborts and successful
transactions is a multiple of 5000. Our observations show
that, checking under this condition is frequent enough in
most cases, because if the contention is high, the number of
aborts will rise quickly to trigger the check.

C. Implementation details

We implement the VOTM model based on the soft-
ware transactional memory system TinySTM [14], a word-
granularity timestamp-based TM system based on the C
language. The algorithm of TinySTM is based on the lazy
snapshot algorithm (LSA) [15]. In our implementation,
TinySTM is configured as a redo-log-based TM system with
encounter-time locking.

In VOTM, access to each view can be controlled inde-
pendently so that a view with high contention will not affect
concurrency of other views that may have low contention.
Experimental results in the next section demonstrate that
using multiple views in this way improves performance.

Similar to TinySTM and many other software TM sys-
tems, in our current implementation, the memory accesses
in VOTM have to be explicitly labelled with primitives such
as Tx read and Tx write. However, these primitives can be
removed with compiler support or hardware TM systems
[16].

Since we use encounter-time locking, the transaction first
writing to a location commonly accessed by other trans-
actions wins (as opposed to TL-2, which uses commit-time
locking instead). However, no matter what conflict detection
policy is used, short transactions can easily abort a long
transaction and computation done by the long transaction
will be wasted. This situation will be further explained in
Section III-A.

D. Origin of performance gain in VOTM

The origin of performance gain in VOTM is very different
from TM systems that use either in-transaction conflict res-
olution algorithms and/or transaction scheduling algorithms.
In-transaction conflict resolution algorithms [17–19] only
detect conflicts and control contentions during the execution
of transactions and on their own still allow any processes
to freely enter transactions. Transaction scheduling algo-
rithms [20–22] prevent conflicts by serializing transactions
or limiting the number of concurrent transactions. These
algorithms treat the entire TM with the same scheduling
decision. However, it is not reasonable to restrict access

4

to a low-contention shared object due to another shared
object that has high contention, a situation that could happen
on these algorithms. In VOTM, transactional memory is
divided into views where shared objects that will be accessed
together in a transaction are grouped into the same view. In
this way, restricting access to a view with high contention
does not affect access to a view with low contention, which
enables more concurrency. In VOTM, RAC is used as the
transactional scheduling algorithm for each view, but any
in-transaction conflict resolution algorithms can be applied
in each view. Regardless of the choice of the underlying
in-transaction conflict resolution algorithm, there are always
cases where the number of aborts becomes very high. Here
RAC can reduce contention by limiting the admission of
processes to the view, and improve progress. We will further
discuss transactional scheduling technologies in Section IV.

In the next section, we will show that VOTM with RAC
can reduce the number of aborts, and therefore reduce
contention and increase throughput, by controlling the ad-
mission to each view.

III. PERFORMANCE EVALUATION

In this section, we compare the performance of VOTM
with the software transactional memory system TinySTM
version 1.0.0 [14] and the lock-based approach which
uses Pthreads mutexes. Our benchmark applications include
Bayes, Intruder, Genome, Labyrinth, Vacation and SSCA2
from the STAMP transactional memory benchmark suite
version 0.9.10 [23], and Travelling Salesman Problem (TSP)
from the SPLASH-2 benchmark suite [24]. They represent
different classes of applications. The experiments are carried
out on a Dell PowerEdge R905 server with four AMD
Opteron 8380 quad-core processors running with 800MHz
and 16GB DDR2 memory. Linux kernel 2.6.32 and the
compiler gcc-4.4 are used during benchmarking.

All programs are compiled with the optimization flag -O2
because it is more stable than -O3. The runtime calculated
in each case includes initialization and finalization costs.
However, the runtime of functions that are irrelevant to the
original application, such as generation of random input
sequences and result-verification, is excluded.

Intruder has short transactions with high contention. In
this application, a dictionary is used to store partial results,
and jobs are handled by a centralized task queue. In the
VOTM version, the task queue and the dictionary are allo-
cated in separate views.

In Bayes, the shared net is accessed by long transactions
with high contention, whereas access to the task queue is
short and does not take computation time. Since the net is
never accessed together atomically with the task queue, they
are allocated in separate views. Default parameters “-v32 -
r4096 -n10 -p40 -i2 -e8 -s1” are used.

Genome is a gene-sequence alignment algorithm which
has multiple shared hash tables with low contention and two

shared arrays with higher contention. Shared data structures
include an input hash table as well as an array of hash tables
containing intermediate fragments plus two arrays tracking
prefixes and suffixes. In the VOTM version, a view is used
to host all shared data structures. In the pure lock-based
version, the hashtable, prefix array, and suffix array are each
protected by a lock. We could protect each bucket in each
hash table with a lock, but this would be too tedious and
change the original algorithm drastically. Default parameters
“-g16384 -s64 -n16777216” are used.

Both Labyrinth and Vacation have long transactions with
little contention. Labyrinth finds the shortest path between
pairs of starting and ending points in a maze, which is
implemented as a shared grid. The shared grid is accessed
with long transactions with low contention. The input file
“random-x512-y512-z7-n512.txt” is used. The shared grid
is allocated as a view in the VOTM version. Since access
to the grid cannot be divided without a complete rewrite of
the algorithm, the pure lock-based version simply uses lock
to protect access to the grid.

Vacation simulates the operation of a travel agency man-
ager. Each transaction consists a set of operations including
adding/removing reservations. The transaction succeeds only
if all operations succeed; otherwise, it will abort and restart.
Transactions are long and with a moderately high memory
accesses, but with low contention. Since all shared data can
be accessed together atomically, they must be put into a
single view in the VOTM version. Also for the same reason,
the critical section cannot be broken down in the pure lock-
based version; therefore, a single lock is used to protect
the critical section. Default parameters “-n4 -q60 -u90 -
r1048576 -t4194304” are used.

SSCA2 has high number of very short transactions with
low contention; therefore, it serves as a test case testing over-
heads for starting and ending transactions. SSCA2 operates
on a large, directed and weighted multigraph. Kernel 1 in this
application is used in STAMP, which constructs the graph
data structure in parallel using adjacency arrays and auxiliary
arrays. Similar to Labyrinth, the graph in SSCA2 is put in a
single view in the VOTM version. In SSCA2, operation on
each graph node is done by a very short transaction that takes
little computation time. Contention is very low in SSCA2
because the large number of graph node means concurrent
updates on the same adjacency list is rare. However there
are many transactions in this application. Default parameters
“-s20 -i1.0 -u1.0 -l3 -p3” are used.

The Travelling-Salesman Problem (TSP) algorithm have
short transactions with very high contention. Transactions
in this algorithm are memory intensive but does not have
computational work; therefore, only a small portion of
execution time is spent in transactions. The algorithm uses
the branch-and-bound depth-limited search approach. The
33-city case ftv33.atsp from TSPLIB95 [25] is used. In
this algorithm, the priority queue (storing partially-evaluated

5

tours) is the shared object, and is allocated in a view. Since
access to this view is short but contentious, a VOTM version
with the Q manually set to 1 is also implemented to test the
benefit of manual Q optimization against the VOTM version
with dynamic Q adjusted by RAC.

Kmeans and Yada from the STAMP benchmark are ex-
cluded from this paper because, in Kmeans, the incremen-
tation of each element in the shared array is atomic, so
atomic operation should be used instead of TM. The Yada
application crashes frequently whenever it runs with multiple
processes, and when it does not crash, parallelization shows
little performance gain, if any, because all computation time
is spent in transactions with extremely high contention.

Table II
APPLICATION RUNTIME (s) AT N = 16

Application VOTM TinySTM Lock-based
TSP Q = 1 52.23 194.73 52.23
Intruder 43.05 127.70 100.62
Bayes 11.15 19.51 30.72
Genome 4.93 5.91 37.48
Labyrinth 35.60 35.08 331.28
Vacation 14.84 14.1 61.88
SSCA2 8.80 8.77 56.28

Table III
NUMBER OF TRANSACTIONS AND ABORTS AT N = 16

Application #transactions VOTM TinySTM
TSP Q = 1 3,925,092 0 4,150,852,440
Intruder 23,428,141 10,986,905 1,238,254,062
Bayes 1,751 4,591 522,972
Genome 2,472,907 83,273 64,595,381
Labyrinth 1056 196 202
Vacation 4,194,304 1,443 1,059
SSCA2 22,362,292 62 64

From Table II, it can be seen that VOTM has superior
performance over TinySTM in high contention applications.
In TSP and Intruder, VOTM is 270% and 200% faster than
TinySTM respectively. In Bayes and Genome, VOTM is also
75% and 20% faster than TinySTM, respectively.

In the above applications, RAC successfully prevents
speedup degradation by restricting the number of processes
admitted to a view. In TSP, RAC eliminates aborts in VOTM
altogether, and for the rest of the applications shown in
Table III, RAC cuts the number of aborts in VOTM by up
to 100 times. The reasons RAC improves performance of
VOTM will be discussed in detail in Section III-A.

In low contention applications, such as Labyrinth and
Vacation with long transactions and SSCA2 with a high
number of very short transactions, the runtime of VOTM
and TinySTM are similar.

At low contention, RAC will allow admission of all
processes in order to maximize concurrency, and will thus

behave like traditional TM. The runtimes of VOTM and
TinySTM for these applications shown in Table II are
similar, suggesting that VOTM has little extra overhead.

However, the pure lock-based version in general has
poor performance because the applications Intruder, Bayes,
Genome, Labyrinth and Vacation have coarse-grained crit-
ical sections occupying the majority of the execution time,
thus eliminating concurrency. To make them work with fine-
grained locking requires tedious algorithms and program-
ming if not impossible.

Although in SSCA2, the time spent in critical sections is
very short, the sheer number of acquires of the same lock
(22 million acquires) in the pure lock-based version makes
the lock a hot-spot. The resultant CPU cache coherence
overhead makes the pure lock-based version unscalable.

Table IV
PERFORMANCE OF TSP AT N = 16

VOTM VOTM TinySTM Lock-based
(dynamic Q) (Q = 1)

time(s) 71.54 52.23 194.73 52.23
#aborts 15,658,595 0 4,150,852,440 0

The application TSP has a shared priority queue with high
contention. Therefore, TinySTM is not scalable. Since access
to the priority queue is known to be very short but memory-
intensive, VOTM benefits from manually setting Q to 1 to
avoid transactional overheads. As shown in Table IV, VOTM
with Q = 1 has a 27% performance gain over VOTM with
dynamic Q. By manually setting Q = 1, the performance of
VOTM now matches the lock-based version, because locking
is more effective to protect highly contentious shared data
such as this priority queue.

The above results show our VOTM model has the per-
formance advantage over TM in high contention situations
and allows the performance benefit of fine-grained locking
through the optimization of admission quota.

A. How RAC improves performance

RAC improves performance in two ways. The first way is
through removing the transactional overhead by switching to
lock-based mechanism when the admission quota Q equals
1.

To investigate this transactional overhead, microbench-
marks of transactions with 0, 1, 10, 100, 1000, 10000
and 100000 read and write operations are performed. Each
read/write operation is performed in a separate location to
examine the real cost of read- and write-set maintenance. To
amortize measuring noise, we have collected the results by
first measuring the execution time of 100,000 sequentially-
executed identical transactions and then calculating the
average execution time of one transaction. The results are
presented in Table V.

6

Table V
OVERHEAD OF TRANSACTIONS WITH DIFFERENT SIZE

no. of r/w 0 1 10 100 1000 10000 100000
time(µs) 0.21 0.35 1.30 10.65 109.47 1216.22 14425.03

From Table V, it can be seen that the cost of starting and
ending a transaction itself is not trivial (0.21µs per empty
transaction), and for a long transaction with 100,000 reads
and 100,000 writes, the overhead can be up to 14ms per
transaction. Therefore, transactions are expensive.

To avoid the expenses in transactional memory, RAC
drops the transactional memory mechanism when the ad-
mission quota of a view becomes 1.

The second way that RAC improves performance is
through reducing the number of aborts by decreasing Q.
As the application is run, the RAC algorithm adjusts Q
according to the abort/success ratio. Q will eventually settle
at the value where access speedup saturates (i.e. the number
of processes where maximum concurrency is reached).

After the speedup of accessing the view is saturated, RAC
prevents speedup degradation by restricting admission to
the view to Q processes to prevent extra processes from
increasing contention and conflicts. This is very important
in real-life situations, as it can be difficult to determine in
advance the number of processes needed to saturate access
speedup if the access patterns are dynamic and bursty.

In order to demonstrate the effect of RAC in terms
of restricted admission, we use Bayes in this part of the
experiment. Here the number of running processes (N) is
fixed to 16 and the admission quota (Q) is fixed to 1, 2,
4, 8 and 16 respectively. The Q = 16 case is equivalent
to no restriction of admissions, but the Q = 1 case still
uses transactions (tx) in order to show only the effect of
admission control. However, result of a Q = 1 case run
without transactions (no tx) is also shown to demonstrate
transactional overheads.

Table VI
RUNTIME AND NUMBER OF ABORTS OF BAYES AT DIFFERENT Q

1(no tx) 1(tx) 2 4 8 16
time(s) 27.51 28.34 23.53 12.42 9.4 12.54
#aborts 0 0 337 1143 3422 536384

From Table VI, it can be seen that Bayes performs the
best at Q = 8. When Q is smaller, the performance is
not good due to lack of concurrency, though the number of
aborts is small. However, when Q is larger, the performance
gets worse due to high contention. Therefore, RAC is very
useful for adjusting Q to the optimal value. Differences
between Q = 1 cases with and without using transactional
mechanisms reflect transactional overheads.

Figure 3 shows a scenario explaining theoretically why
RAC can improve performance with restricted admission.

As mentioned earlier, in TinySTM, a late-coming short
transaction can easily abort a long transaction that has
been running for a long time if the short transaction locks
an object first. The time between the entry of the long
transaction and the short transaction will be wasted. RAC
can reduce the likelihood of this situation by restricting the
number of processes acquiring the view.

transaction,

blocked by RAC

until the first

transaction

commits

T3 is the third

write(a)

write(a)

write(a)

write(a)

read(a)

write(b)

T1 T3T2

time saved

T1 aborts
and restarts

read(a)

read(b)read(b)

T3T1 T2

write(a)
write(b)

read(a)

Then when T1

tries to access

it aborts.

TinySTM RAC Q = 2

when it first

T3 locks a

the locked a,

writes to a

Figure 3. RAC implementation over TinySTM - RAC blocks T3 and
prevents it from aborting T1 in high contention

In Figure 3, the long transaction T1 conflicts with the
short transaction T3, although T3 starts much later than T1,
T3 locks the variable a first. T1 finds out the conflict when
it tries to write to the variable a, then it aborts and restarts.
However, if Q is set to 2 by RAC, T3 is the third transaction
to begin, so it is blocked until the first transaction (T1)
commits, which prevents it from conflicting and aborting
T1.

The above results and analysis have demonstrated the
advantage of RAC that can dynamically adjust the admission
quota Q to the optimal, keeping the best balance between
concurrency and contention.

B. View partitioning improves performance

To investigate benefits of view partitioning over traditional
TM with transaction scheduling, performance of VOTM
and “TinySTM + RAC” is compared using the applications
Intruder and Bayes. “TinySTM + RAC” is a system that
implements the transaction scheduling algorithms like RAC
for the entire TM.

Table VII
PERFORMANCE OF VOTM AND TINYSTM + RAC AT N = 16

Application VOTM TinySTM + RAC

time(s) Bayes 11.15 11.97
Intruder 43.05 59.50

#aborts Bayes 4591 4587
Intruder 10986905 10337777

Table VII shows that for Intruder and Bayes where their
VOTM versions have multiple views, VOTM outperforms

7

“TinySTM + RAC” by 38% and 7% respectively. In these
applications, both VOTM and “TinySTM + RAC” experi-
ence similar contention.

In both applications, a view with high contention is
often accessed at the same time as another view with
low contention. For example, in Intruder, a process can
dequeue a task from the task list (with low contention)
while another process can access the dictionary, which has
high contention, and therefore access is restricted by RAC
in VOTM. Similarly in Bayes, the task list and the highly-
contended net are allocated in separate views. By placing the
task list and the high contention data, such as the dictionary
and the net in separate views in VOTM, the restriction
placed on access to the dictionary and the net will not affect
access to the task list and reduce concurrency. However, in
“TinySTM + RAC”, the entire shared memory is restricted
to access under the same admission quota. Therefore, access
of all data structures in the shared memory, including the
task list with little contention, will be restricted as a result
of contention in the dictionary and the net. That is, the
concurrency of processes accessing the task list will be
unnecessarily affected in “TinySTM + RAC”. As shown
in the above results, the memory partitioning philosophy
of VOTM resolves this problem and therefore has superior
performance over transactional memory with transaction
scheduling algorithms like “TinySTM + RAC”.

IV. RELATED WORK

A. Transactional scheduling

All in-transaction conflict resolution algorithms, including
both early-locking (such as DSTM [17, 26], SXM [18]
and McRT-STM [27]) and late-locking (such as TL-2 [19]
and NOrec [28]) algorithms, resolve conflicts within a
transaction only after these conflicts have been detected,
but processes are still freely admitted into transactions.
Therefore, the aborts cannot be stemmed in high contention
and work is still wasted by transactions that eventually
aborts.

Recently, some transaction scheduling algorithms have
evolved to control admission of processes into transactions
when contention is high, aiming at preventing conflicts
before they occur and therefore reducing wasted work on
aborted transactions. This family of transactional schedul-
ing algorithms works orthogonally with the in-transaction
conflict resolution algorithms mentioned above.

Transaction scheduling algorithms such as [21] use a
process-local contention score. When a process experiences
high contention, it queues the starting transaction to a central
scheduler, which will execute queued transactions serially.
[22] adopts a similar approach, except when a process
experiences high contention it uses a heuristic approach that
predicts read and write sets of the starting transaction using
read and write sets of previous transactions of the processes.
If any address in the predicted read and write sets is

being written by any other currently executing transactions,
then the starting transaction will be queued to be executed
serially. Otherwise, the transaction executes immediately.
This algorithm relies on heuristic prediction of what will
be read/written in the starting transactions. The admission
control algorithm in [20] also adopts a similar approach.

However, as discussed in Section II-D and Section III-B,
all transaction scheduling algorithms described above treat
the entire TM with the same scheduling decision. Therefore,
access to a low-contention shared object can be unreasonably
restricted due to another high-contention shared object. Also
the statistics collected for the entire TM are not as accurate
as those collected per view basis and are thus less applicable.

B. Adaptive locks

The speculative lock elision (SLE)-based model [29] was
proposed to avoid unnecessary exclusive accesses in lock-
based programs. An elidable lock can be acquired “specu-
latively” (using TM) or “non-speculatively” (using mutex).
At any time, an elidable lock can be acquired speculatively
by multiple processes, but only one process can hold an
elidable lock non-speculatively at any time. In addition, a
non-speculative process trying to acquire an elidable lock
will not be blocked by other speculative processes currently
holding the lock. The system keeps track of accesses to
shared memory and ensures that the non-speculative atomic
section always win and other conflicting speculative atomic
section will be aborted. When acquiring an elidable lock
or restarting an aborted atomic section, the system uses a
heuristic approach to decide whether to acquire the elidable
lock speculatively.

The adaptive lock model in [30] has a similar approach,
except a process trying to acquire the lock in mutex mode
must wait until all existing processes holding the lock in
transaction mode to finish.

Like VOTM, both SLE and adaptive lock models have
separate access control on each elidable lock, to ensure re-
strictions placed by the system on locks with high contention
will not unnecessarily affect concurrency of accessing other
elidable locks with low contention. However these models
either allows all processes to hold the elidable lock in
speculative mode, or exclusive access to one thread during
non-speculative (mutex) mode, yet as shown in section III-A,
there are some cases where the optimal admission quota of a
lock/view is actually between 1 and NPROCS. Therefore,
RAC can achieve a superior performance by finding out the
optimal admission quota to achieve maximal concurrency
rather than only choosing between the two extremes –
exclusive access to one process or admitting all processes.

V. CONCLUSIONS AND FUTURE WORK

VOTM allows shared data with different access patterns to
be allocated in different views, and then let RAC optimize

8

access to each view independently according to the con-
tention level of each view. Therefore, processes accessing a
view with low contention will not be hindered by restrictions
placed on another view with high contention.

With RAC, VOTM seamlessly integrates locking mech-
anism and transactional memory into one programming
paradigm. It can take advantage of the merits of both the
pessimistic (locking) and the optimistic (TM) approaches
to concurrency control. Programmers do not need to worry
about concurrency control of the view, because concurrency
control is left to the system (RAC) to decide whether a
locking mechanism or a transactional mechanism should be
used based on the contention situation of the view.

RAC can improve performance of VOTM regardless
of which underlying TM algorithm is used. In any TM
algorithms, there will be situations where the contention
become very high (number of aborts becomes much larger
than the number of transactions), and in these situations,
RAC will step in and restrict admission to the view to
control contention, thereby reduces works wasted by aborted
transactions and improves progress. Experimental results
show that RAC has superior performance to both TM and
the lock-based approach because of the ability of RAC con-
trolling admission and switching between TM and locking,
whereas traditional TM has a performance issue when the
contention is high and lock-based approach only works well
in fine-grained locking but poorly in coarse-grained locking.
Therefore, through the definition/creation of different views
in TM, VOTM offers better performance than traditional
transactional memory and better convenience (and some-
times better performance) than lock-based programming. We
believe this new programming paradigm will bridge the gap
between TM and lock-based programming, and thus will
bring more vitality to the research of TM.

One issue with RAC is blocking of processes by RAC
when Q is smaller than NPROCS. This blocking seems
to violate the lock-free or obstruction-free feature of TM
systems [31]. Even though this feature is arguably neces-
sary [32], RAC can quickly resolve this kind of blocking
when the contention becomes low and thus Q is increased up
to NPROCS, as long as Q does not become 1. If necessary,
RAC can completely avoid blocking by using transactions
even when Q equals 1, though it will lose some performance
gain. In this way, if the system discovers that blocking is
too long, the blocking can be easily lifted by increasing Q.
Actually, in normal situations, the blocking in RAC is not
worse than the live-locking in TM when transactions abort
each other without progress under high contention.

Another issue with the current VOTM model is the possi-
bility of deadlock during nested view acquisition. However,
in most of the cases, nested view acquisition is not necessary,
as shared data that can be accessed together atomically
should be allocated in the same view. For example, in
VOTM, all nodes in a tree will be allocated into the same

view, thus nested view acquisition for individual nodes of
the tree is unnecessary.

As a future work, we will investigate potential refinements
on the RAC algorithm, such as adaptive adjustment of the
sampling interval, discovery of optimal parameters like MIN
and MAX for the abort/success ratio, and the impact of
different underlying TM algorithms (such as NOrec [28])
on these parameters. We will also benchmark VOTM against
other transactional scheduling and adaptive lock systems to
identify performance and overheads in different cases.

REFERENCES

[1] C. Cascaval, C. Blundell, M. Michael, H. W. Cain,
P. Wu, S. Chiras, and S. Chatterjee, “Software transac-
tional memory: Why is it only a research toy?” Queue,
vol. 6, pp. 46–58, September 2008.

[2] J. R. Larus and R. Rajwar, Transactional Memory, ser.
Synthesis Lectures on Computer Architecture. Morgan
and Claypool, 2007.

[3] L. Lamport, “A new solution of Dijkstra’s concurrent
programming problem,” Commun. ACM, vol. 17, no. 8,
pp. 453–455, 1974.

[4] G. Peterson, “Myths about the mutual exclusion prob-
lem,” Information Processing Letters, vol. 12, no. 3,
pp. 115–116, 1981.

[5] A. Tanenbaum and M. Steen, Distributed Systems:
Principles and Paradigms, Chapter 5. Prentice Hall,
2002.

[6] M. Herlihy and J. E. B. Moss, “Transactional mem-
ory: architectural support for lock-free data structures,”
SIGARCH Computer Architecture News, vol. 21, pp.
289–300, May 1993.

[7] D. B. Lomet, “Process structuring, synchronization,
and recovery using atomic actions,” in ACM Confer-
ence on Language Design for Reliable Software, March
1977, pp. 128–137.

[8] H. Kung and J. Robinson, “On the optimistic meth-
ods for concurrency control,” ACM Transactions on
Database Systems, vol. 6, no. 2, pp. 213–226, June
1981.

[9] P. Bernstein and N. Goodman, “Concurrency control in
distributed database systems,” ACM Computer Survey,
vol. 13, no. 2, pp. 185–221, June 1981.

[10] K.-C. Leung, Z. Huang, Q. Huang, and P. Werstein,
“Data race: Tame the beast,” Journal of Supercomput-
ing, vol. 51, no. 3, pp. 258–278, March 2010.

[11] J. Zhang, Z. Huang, W. Chen, Q. Huang, and W. Zheng,
“Maotai: View-oriented parallel programming on CMT
processors,” in Proceedings of the 37th International
Conference on Parallel Processing, 2008, pp. 636–643.

[12] Z. Huang, M. Purvis, and P. Werstein, “Performance
evaluation of view-oriented parallel programming,” in
Proceedings of the 34th International Conference on

9

Parallel Processing. Oslo: IEEE Computer Society,
June 2005, pp. 251–258.

[13] L. Ceze, P. Montesinos, C. von Praun, and J. Torrellas,
“Colorama: Architectural support for data-centric syn-
chronization,” in Proceedings of the 13th International
Symposium on High-Performance Computer Architec-
ture, 2007, pp. 133–134.

[14] P. Felber, C. Fetzer, and T. Riegel, “Dynamic per-
formance tuning of word-based software transactional
memory,” in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming. New York, NY, USA: ACM, 2008,
pp. 237–246.

[15] T. Riegel, P. Felber, and C. Fetzer, “A lazy snap-
shot algorithm with eager validation,” in 20th Interna-
tional Symposium on Distributed Computing, Septem-
ber 2006.

[16] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early
experience with a commercial hardware transactional
memory implementation,” in Proceeding of the 14th
International Conference on Architectural Support
for Programming Languages and Operating Systems.
ACM, 2009, pp. 157–168.

[17] W. N. Scherer, III and M. L. Scott, “Advanced con-
tention management for dynamic software transactional
memory,” in Proceedings of the Twenty-Fourth Annual
ACM Symposium on Principles of Distributed Comput-
ing, M. K. Aguilera and J. Aspnes, Eds. ACM, 2005,
pp. 240–248.

[18] R. Guerraoui, M. Herlihy, and B. Pochon, “Polymor-
phic contention management,” in Proceedings of the
19th International Symposium on Distributed Comput-
ing. LNCS, Springer, 2005, pp. 26–29.

[19] D. Dice, O. Shalev, and N. Shavit, “Transactional lock-
ing II,” in Proceedings of the 20th International Sym-
posium on Distributed Computing, September 2006.

[20] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, and
I. Watson, “Adaptive concurrency control for transac-
tional memory,” University of Manchester, Tech. Rep.,
2007.

[21] R. M. Yoo and H.-H. S. Lee, “Adaptive
transaction scheduling for transactional memory
systems,” in Proceedings of the Twentieth
Annual Symposium on Parallelism in Algorithms
and Architectures. New York, NY, USA:
ACM, 2008, pp. 169–178. [Online]. Available:
http://doi.acm.org/10.1145/1378533.1378564

[22] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh,
“Preventing versus curing: avoiding conflicts in trans-
actional memories,” in Proceedings of the 28th ACM
Symposium on Principles of Distributed Computing.
New York, NY, USA: ACM, 2009, pp. 7–16.

[23] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun, “STAMP: Stanford transactional applications for

multi-processing,” in Proceedings of The IEEE In-
ternational Symposium on Workload Characterization,
September 2008.

[24] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta, “The SPLASH-2 programs: Characterization
and methodological considerations,” in Proceedings of
the 22nd Annual International Symposium on Com-
puter Architecture, 1995, pp. 24–36.

[25] G. Reinelt, “TSPLIB95,” Institut für Angewandte
Mathematik, Universität Heidelberg, Tech. Rep., 1995.

[26] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer,
III, “Software transactional memory for dynamic-sized
data structures,” in Proceedings of the 22nd annual
symposium on Principles of Distributed Computing.
New York, NY, USA: ACM, 2003, pp. 92–101.

[27] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C.
Minh, and B. Hertzberg, “McRT-STM: a high per-
formance software transactional memory system for
a multi-core runtime,” in Proceedings of the eleventh
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. New York, NY, USA: ACM,
2006, pp. 187–197.

[28] L. Dalessandro, M. F. Spear, and M. L. Scott, “NOrec:
streamlining STM by abolishing ownership records,”
in Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming.
New York, NY, USA: ACM, 2010, pp. 67–78.

[29] A. Roy, S. Hand, and T. Harris, “A runtime
system for software lock elision,” in Proceedings
of the 4th ACM European Conference on
Computer Systems. New York, NY, USA:
ACM, 2009, pp. 261–274. [Online]. Available:
http://doi.acm.org/10.1145/1519065.1519094

[30] T. Usui, R. Behrends, J. Evans, and Y. Smaragdakis,
“Adaptive locks: Combining transactions and locks
for efficient concurrency,” in Proceedings of the 18th
International Conference on Parallel Architecture and
Compilation Techniques. Washington, DC, USA:
IEEE Computer Society, 2009.

[31] R. Guerraoui and M. Kapalka, “On obstruction-free
transactions,” in 20th ACM Symposium on Parallelism
in Algorithms and Architectures, 2008.

[32] R. Ennals, “Software transactional memory should not
be obstruction-free,” Intel Corporation, Tech. Rep.,
2006.

10

