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Abstract—This paper extends the Restricted Admission Control
(RAC) theoretical model to cover the multiple-view cases in View-
Oriented Transactional Memory (VOTM) to analyze potential
performance gain in VOTM when shared data is partitioned into
multiple views. Experimental results show that partitioning shared
data into separate views, each of which is independently controlled
by RAC, can improve performance when one of the views has high
contention while others have low contention. In memory-intensive
transactions, even when contention is not high enough to justify
admission control by RAC, partitioning shared data into different
views can improve the performance of TM systems such as NOrec
by reducing the contention in accessing the TM metadata.
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I. INTRODUCTION

In transactional memory (TM) models, atomic access to

shared data is achieved by transactions. To facilitate concur-

rency, all threads can freely enter a transaction, access shared

objects, and hopefully commit the transaction at the end [1].

If a conflict occurs between concurrent transactions, one or

more transactions will be aborted and rolled back. TM will

undo the effects of the aborted transactions and restart them.

When conflicts of accesses are rare, TM has very little rollback

overhead and encourages high concurrency, since multiple

threads can freely access different parts of the shared data.

However, when conflicts are frequent (i.e., the contention is

high), the rollback overhead is staggering, and TM becomes not

scalable due to the large number of aborted transactions. In such

situations, the lock-based approach becomes more efficient as

it avoids the excessive operational overhead of transactions [2].

To address this contention problem, we had proposed the

Restricted Admission Control (RAC) model [3]. RAC reduces

contention by restricting the number of threads entering a

transaction when the contention is high. In extreme cases, RAC

can fall back to a lock-based mechanism to ensure progress.

When contention is low, RAC allows threads to freely enter

a transaction to maximize concurrency. However, a problem

in this RAC approach is that, if there are two or more shared

objects that are never accessed together in the same transaction,

RAC will not perform effectively. Especially when one of

the shared objects has high contention but the others have

low contention, RAC would unnecessarily restrict access to all

shared objects, including those with low contention. In such

situations, RAC would hinder the concurrency of transactions

that only access shared objects with low contention.

To improve performance in these situations, we proposed

the View-Oriented Transactional Memory (VOTM) paradigm

in our previous papers [2, 3]. VOTM is a variant of our

View-Oriented Parallel Programming (VOPP) model [4–6] in

transactional memory. In VOTM, shared memory is partitioned

into “views” by the programmer according to the memory

access pattern of the application. The size and the content of

a view can be determined by the programmer as a natural part

of the programming task. A view can be dynamically allocated

and destroyed, but cannot overlap with other views. Before a

view is accessed (read or written), it must be acquired (by

simply using acquire view). After a view is used, it must be

released by using release view). This data-centric model bun-

dles concurrency control and data access together. Therefore, it

relieves programmers from controlling concurrent data accesses

directly with either locks or transactions, but leaves it to the

system (such as RAC) to decide how to concurrently access a

view.

In VOTM, RAC controls access to each view independently,

according to the contention of the view. Shared objects that

should be accessed together are put into the same view; whereas

objects that are never accessed together in a transaction should

be put into different views. Therefore, VOTM can ensure

progress by restricting admission to views with high contention,

while maximizing concurrency by allowing threads to freely

access other views with low contention.

This paper has the following contributions. First, we extend

the theoretical model of RAC [3] to illustrate that partitioning

shared data into multiple views can further improve perfor-

mance in VOTM.

Second, we extensively evaluate the VOTM model with

microbenchmarks and real applications. We have used different

transactional memory implementations to investigate in which

cases and in what ways VOTM can improve performance.

The rest of the paper is organized as follows. Section 2 will

present the RAC scheme and its theoretical model in VOTM.

Section 3 will evaluate the VOTM model with experimental

results from microbenchmarks and real applications. Section 4

will discuss related work and Section 5 concludes the paper.

II. VOTM AND ITS IMPLEMENTATION

As mentioned above, VOTM is based on the philosophy of

VOPP [2] which partitions the shared memory into views.

The RAC scheme is implemented for every view in VOTM.

Each view has an admission quota Q that restricts the maximum

number of threads accessing the view concurrently. Before a
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view is accessed, the primitive acquire view is used. If Q is

equal to 1, acquire view is equivalent to a lock acquisition. In

this case, lock mechanism is used instead of the transactional

mechanism to avoid the transactional overhead. If Q is greater

than 1, acquire view will either start a new transaction or wait

according to the following RAC scheme.

Suppose a view has an admission quota Q. We assume the

current number of threads concurrently accessing the view is P .

When the view is acquired through acquire view, RAC follows

the steps below:

1) Compare P with Q. If P is smaller than Q, increase P
by 1, start a new transaction, and return with success.

2) If P equals Q, the calling thread is blocked until P
becomes smaller than Q, and then goes to Step 1.

When the view is released through release view, RAC exe-

cutes the following steps:

1) Try to commit the transaction. If the commit fails, abort

and roll back the transaction, decrease P by 1, and

reacquire the view as shown above.

2) If the commit succeeds, decrease P by 1, and then return

with success.

Furthermore, RAC can dynamically adjust the admission

quota Q in the following way according to the contention

situation. The admission quota Q of each view is initialized

as the maximum number of threads (N). RAC regularly checks

the contention situation. If the contention is high, RAC will

relieve the contention of the view by halving the admission

quota Q. This process can be repeated periodically until Q
reaches 1, in which case the concurrency control is switched

to the lock-based approach and the transactional mechanism

is no longer used to access the view. Conversely, when the

contention is low, RAC will increase concurrency by doubling

Q. This process will repeat periodically until Q reaches N.

Obviously, to find out when to adjust Q is crucial to

the performance of RAC. The following theoretical analysis

helps understand when RAC can outperform conventional TM

systems and when Q should be adjusted to achieve optimal

performance.

The rest of this section will first provide a theoretical analysis

of RAC and analyze performance gain of multiple views. Then,

we will briefly describe our VOTM implementation and the

programming interface. The VOTM programming interface can

parallelize existing serial code easily with little instrumentation.

A. Theoretical analysis of the RAC model

In Sections II-A1 and II-A2, we first introduce the prelimi-

nary of the RAC model that has been obtained in our previous

work [3], then we will extend the theoretical analysis on

potential performance gain in multiple views in section II-A3.

1) RAC vs. conventional TM: Consider a set of

transactions ST = {T1, ..., Tn}, which access the same view

and are executed by N threads. The duration of transaction

Ti(1 ≤ i ≤ n) is denoted by ti and refers to the time period

that Ti is executed from start to commit without conflicts and

interruptions. For simplicity of the analysis, we assume that,

during the execution of Ti, the expected number of aborts is

ci and the average time spent by an aborted transaction is

di, where ci, di ≥ 0. Therefore, the expected execution time

for Ti is cidi + ti in conventional TM that has no admission

control of transactions.

Makespan is defined as the total time needed to perform

all transactions [3]. Suppose that N threads are continuously

executing the transactions, then the best possible makespan
for ST in conventional TM, denoted by makespanTM (ST ),
can be calculated as

makespanTM (ST ) =

∑n
i=1 cidi + ti

N
(1)

In RAC, Q transactions are allowed to be executed at any

given time, where 1 ≤ Q ≤ N . The expected execution time

for Ti is Q−1
N−1 × cidi + ti, which can be proven as follows.

Suppose Ti aborts due to the conflict of shared memory loca-

tion s accessed by Ti′ in conventional TM. However, in RAC, if

Ti is allowed to access s at a given time, the probability that Ti′

is also allowed to access s is Q−1
N−1 , because RAC allows only Q

threads accessing s at any given time. So, the probability that

Ti has 1 abort due to the conflict with Ti′ is Q−1
N−1 . According

to the binomial distribution, the probability that Ti has k aborts

(k ∈ {0, 1, ..., ci}) is p(k) =
(
ci
k

)
(Q−1
N−1 )

k(N−Q
N−1 )

ci−k. There-

fore, the expected execution time for Ti in RAC is
∑ci

k=1(kdi+
ti)p(k) =

∑ci
k=1 kp(k)di +

∑ci
k=1 p(k)ti =

Q−1
N−1 × cidi + ti.

(By the binomial distribution,
∑ci

k=1 kp(k) = Q−1
N−1 × ci and∑ci

k=1 p(k) = 1)

Suppose the Q threads are continuously executing the trans-

actions in RAC, then the makespan for ST in RAC, denoted

by makespanRAC(ST ), is

makespanRAC(ST ) =

∑n
i=1

Q−1
N−1 × cidi + ti

Q
(2)

Therefore, the difference of makespanRAC(ST ) and

makespanTM (ST ), denoted by Δ, can be obtained by Equa-

tion 1 and 2 as follows.

Δ = makespanRAC(ST )−makespanTM (ST )

=

∑n
i=1

Q−1
N−1 × cidi + ti

Q
−

∑n
i=1 cidi + ti

N

=
1

N − 1
(
1

N
− 1

Q
)(

n∑

i=1

cidi −
n∑

i=1

ti(N − 1)) (3)

Let δ =
∑n

i=1 cidi∑n
i=1 ti(N−1) . It can be derived from Equation 3

that

(a) if δ > 1, then Δ < 0 and makespanRAC(ST ) <
makespanTM (ST ). That is, RAC outperforms conventional

TM and the performance improvement is |Δ| when δ > 1 (i.e.,∑n
i=1 cidi >

∑n
i=1 ti(N − 1)). From this condition, it can be

seen that RAC works especially well for transactions with high

contention (ci can be considered as the number of conflicts

experienced by Ti), which will be verified in our experimental

results.

(b) If δ ≤ 1, then Δ ≥ 0 and makespanRAC(ST ) ≥
makespanTM (ST ). That is, when δ ≤ 1, we should set Q
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to N in RAC. When Q equals to N , Δ = 0 and RAC works

the same as the conventional TM.
2) RAC with Q′ threads vs. Q threads: Similar to the

deduction of Equation 3, the difference between makespans

of RAC using Q′ (new) threads (makespanRAC(ST , Q
′)) and

Q (previous) threads (makespanRAC(ST , Q)) is

makespanRAC(ST , Q
′)−makespanRAC(ST , Q)

=
1

Q− 1
(
1

Q
− 1

Q′
)(

n∑

i=1

ci(Q)× di(Q)−
n∑

i=1

ti × (Q− 1))

(4)

where ci(Q) and di(Q) are the expected number of aborts

and the average time spent by an abort of Ti when using Q
threads in RAC.

Let δ(Q) =
∑n

i=1 ci(Q)×di(Q)
∑n

i=1 ti×(Q−1) . It can be derived from

Equation 4 that
(a) if δ(Q) > 1 and Q′ < Q, then makespanRAC(ST , Q) >

makespanRAC(ST , Q
′). That is, if δ(Q) > 1, RAC should

decrease Q to reduce the execution time of the concurrent

transactions.
(b) if δ(Q) < 1 and Q′ > Q, then makespanRAC(ST , Q) >

makespanRAC(ST , Q
′). Therefore, to reduce the execution

time of the concurrent transactions, RAC should increase Q.
In summary, we have the following observation:

Observation 1. If δ(Q) is larger than 1, Q should be de-
creased; if δ(Q) is smaller than 1, Q should be increased, in
order to reduce the makespan of ST in RAC.

In our implementation of RAC,
∑n

i=1 ci(Q)× di(Q) is esti-

mated with the total CPU cycles spent in aborted transactions,

and
∑n

i=1 ti is estimated with the total CPU cycles spent

in successful transactions. Therefore, δ(Q) is estimated with

Equation 5 in RAC:

δ(Q) =
CPUcyclesaborted tx

CPUcyclessuccessful tx × (Q− 1)
(5)

3) RAC in multiple views vs single view: We analyze the

potential gain of performance in multiple-views scenario where

RAC can separately control admission to each view according

to its contention. It is compared with the scenario where RAC

controls access to the entire transactional memory.
Assume the set of transactions ST = {T1, ..., Tn} can be

divided into two non-intersecting subsets S1
T = {T 1

1 , ..., T
1
n}

and S2
T = {T 2

1 , ..., T
2
n}, where transactions in S1

T ac-

cess data in Object1, and transactions in S2
T access data

in Object2. So, if δ1 =
∑n

i=1 c1id
1
i∑n

i=1 t1i (N−1)
> 1 (high

contention), δ2 =
∑n

i=1 c2id
2
i∑n

i=1 t2i (N−1)
≤ 1 (low contention),

and Q1 ≤ Q ≤ Q2, then the makespan of putting

Object1 and Object2 into separate views with indepen-

dent RAC makespanMV−RAC((S
1
T , Q

1), (S2
T , Q

2)) should

be smaller than the makespan of a single view with RAC

makespanRAC(ST , Q):

makespanMV−RAC((S
1
T , Q

1), (S2
T , Q

2))

≤ makespanRAC(ST , Q)
(6)

The proof of Equation (6) is as follows.

makespanRAC(ST , Q)

=

∑n
i=1

Q−1
N−1 × cidi + ti

Q

=

∑n
i=1 cidi
N − 1

+
1

Q
× (

n∑

i=1

ti −
∑n

i=1 cidi
N − 1

)

=

∑n
i=1 c

1
i d

1
i

N − 1
+

1

Q
× (

n∑

i=1

t1i −
∑n

i=1 c
1
i d

1
i

N − 1
)

+

∑n
i=1 c

2
i d

2
i

N − 1
+

1

Q
× (

n∑

i=1

t2i −
∑n

i=1 c
2
i d

2
i

N − 1
)

= makespanRAC(S
1
T , Q) +makespanRAC(S

2
T , Q) (7)

Suppose view 1 has high contention,

i.e., δ1 =
∑n

i=1 c1id
1
i∑n

i=1 t1i (N−1)
> 1, and Q1 ≤ Q. Then,

makespanRAC(S
1
T , Q

1) ≤ makespanRAC(S
1
T , Q) (8)

Suppose view 2 has low contention,

i.e., δ2 =
∑n

i=1 c2id
2
i∑n

i=1 t2i (N−1)
≤ 1, and Q ≤ Q2. Then,

makespanRAC(S
2
T , Q

2) ≤ makespanRAC(S
2
T , Q) (9)

Therefore, we have

makespanRAC(S
1
T , Q

1) +makespanRAC(S
2
T , Q

2)

≤ makespanRAC(S
1
T , Q) +makespanRAC(S

2
T , Q)

(10)

Since the makespan of the multiple-view RAC is:

makespanMV−RAC((S
1
T , Q

1), (S2
T , Q

2))

= makespanRAC(S
1
T , Q

1) +makespanRAC(S
2
T , Q

2)
(11)

and the makespan of the single view RAC is:

makespanRAC(ST , Q)

= makespanRAC(S
1
T , Q) +makespanRAC(S

2
T , Q)

(12)

From Equation (10), we have:

makespanMV−RAC((S
1
T , Q

1), (S2
T , Q

2))

≤ makespanRAC(ST , Q)
(13)

Now we have this observation:

Observation 2. If there are two shared objects, which are not
required to be accessed together in the same transaction, and
the first object has high contention (δ(Q) is larger than 1) but
the second object has low contention (δ(Q) is smaller than
1), then the two objects should be put into separate views to
reduce the makespan of RAC.

In the experimental section, we will examine the multiple-

view RAC model with the Eigenbench microbenchmark suite,

and examine the performance of RAC over different TM

implementations and different applications.
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B. Implementation

The implementation of VOTM is based on RSTM-7.0 [7],

a C++-based modular software transactional memory system

where TM algorithms such as the encounter-time locking algo-

rithm OrecEagerRedo and the commit-time locking algorithm

NOrec [8] are implemented as plug-ins and can be chosen

easily by reconfiguration. In VOTM, each view is essentially

an independent TM system, and the access of each view is

separately controlled by its own RAC. The implementation

of the RAC algorithm had been described in our previous

paper [3].

C. The VOTM programming interface

Figure 1 shows a C example to explain how to create a view

for a linked list in VOTM. In the example, create view() creates

a view vid for the linked list, and malloc block() allocates a

memory block from the view for the list head.

1 typedef struct Node_rec Node;
2

3 struct Node_rec {
4 Node *next;
5 Elem val;
6 };
7

8 typedef struct List_rec {
9 Node *head;

10 } List;
11

12 List *ll_init(vid_type vid) {
13 List *result;
14 create_view(vid, size, 0);
15 result = malloc_block(vid, sizeof(result[0]));
16 acquire_view(vid);
17 result->head = NULL;
18 release_view(vid);
19 return result;
20 }

Figure 1. Code snippet of list initialization in VOTM [2]

Here, programmers can either let RAC to dynamically con-

trol access to the view by specifying a value smaller than

1 to the third argument of create view(). Alternatively, if

the contention of the view is known to the programmer, the

admission quota Q of the view can be statically set via the

third argument.

A VOTM code snippet for list insertion is shown in Figure 2.

Here the parameter node of the function points to a node that

is a memory block belonging to the view of the linked list.

Compared with the sequential version of the code snippet,

the only extra code is the view primitives, acquire view() and

release view(), that demarcate view access.

A summary of the VOTM API [2] is shown in Table I.

III. PERFORMANCE EVALUATION

This experiment aims at verifying Observation 2 for applica-

tions in which shared data can be divided into multiple views.

The applications include microbenchmarks from a modified

version of the Eigenbench Suite [9] and the memory-intensive

real TM application Intruder from the STAMP-0.9.10 bench-

mark suite [10].

1 void ll_insert(List *list, Node *node, vid_type vid) {
2 Node *curr;
3 Node *next;
4

5 acquire_view(vid);
6

7 if (list->head->val >= node->val) {
8 /* insert node at head */
9 node->next = list->head;

10 list->head = node;
11 } else {
12 /* find the right place */
13 curr=list->head;
14 while (NULL != (next = curr->next) &&
15 next->val < node->val) {
16 curr = curr->next;
17 }
18 /* now insert */
19 node->next = next;
20 curr->next = node;
21 }
22 release_view(vid);
23 }

Figure 2. Code snippet of list insertion in VOTM [2]

For each application, the following versions are imple-

mented:

single-view

the VOTM implementation with the entire shared data

placed into a single view;

multi-view

the VOTM implementation with shared objects placed

into two separate views;

multi-TM

similar to multi-view, except the access to each view

is completely free without using the RAC mechanism;

TM

the plain RSTM implementation.

In our experiments, if the multi-view version performs better

than the single-view version, Observation 2 is verified. In

order to verify that using multiple views can reduce contention

on global TM metadata, we have implemented the multi-TM

version. If the multi-TM version performs better than the TM

version, we can conclude that using multiple views can help

improve TM performance even if the RAC mechanism is not

used.

Furthermore, to examine when and how VOTM with multiple

views can improve performance in different TM systems, we

have implemented two VOTM versions:

VOTM-OrecEagerRedo

is based on the the encounter-time locking TM algo-

rithm “OrecEagerRedo” (similar to TinySTM [11]),

which is implemented in RSTM-7.0 [7].

VOTM-NOrec

is based on the commit-time locking TM algorithm

“NOrec” [8] which is also from RSTM.

A. Eigenbench

Eigenbench [9] can generate transactions using orthogonal

parameters, and allows a better understanding of the behavior

of a TM system by adjusting the parameters.
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Table I
SUMMARY OF VOTM API [2]

void create view(int vid, size t size, int q) Creates a view with ID vid and size size. q is the maximum number of processes admitted
to this view. If q is less than 1, admission quota of this view will be dynamically
managed by RAC.

void *malloc block(int vid, size t size) Allocates a memory block with the specified size for the view vid. Returns the base
address of the allocated block.

void free block(int vid, void *ptr) Frees the memory block pointed by ptr from the view vid.
void destroy view(int vid) Destroys the view vid.
void brk view(int vid, size t size) Expands the memory space of the view vid by size.
void acquire view(int vid) Acquires read-write access to the view vid.
void acquire Rview(int vid) Acquires read-only access to the view vid.
void release view(int vid) Releases access to the view vid.

For example, contention in Eigenbench is controlled by

adjusting the size of hot array and the number of read and

write accesses to the hot array. High contention can be caused

by large number of read-write accesses to a relatively small

length of hot array. The shared mild array is also accessed by

transactions, but each thread has its own subarray and therefore

access to mild array will not cause conflicts, but will increase

transaction size and rollback overheads.

Long transactions can be generated by adjusting one or more

of the following features:

• reading/writing to a large range of locations in shared

memory;

• many repeated accesses to the same locations in shared

memory;

• frequent access to local memory;

• high computation load inside transactions (using NOPs)

In Eigenbench, a transaction is modelled by a sequence of

reads/writes to the shared memory, interleaved with accesses to

local memory and computation (represented by NOPs). There

are also accesses to local memory and computations outside

transactions in Eigenbench.

In our experiments, we have modified the Eigenbench pro-

gram to have two views, each view has its own hot array,

mild array and parameters concerning the number of read/write

accesses and the number of NOPs in each transaction that

access the view.

The modified Eigenbench program will execute a number of

iterations, which is the total number of transactions specified

for each view. Each iteration accesses one of the two views

randomly, followed by the activities outside transactions. The

pseudocode outlining the modified Eigenbench application is

shown in Figure 3, and parameters used in Eigenbench are

shown in Table II.

In the “multi-view” version, each thread executes 100000

transactions that access view 1 (the high contention view) and

100000 transactions that access view 2 (the low contention

view), with the accesses interleaved randomly. View 1 is set

to be accessed by long transactions with high contention, with

each transaction accessing many elements in a small hot array;

whereas view 2 is accessed by long transactions with low

contention.

In the “single-view” version, each thread executes 200000

transactions. In each iteration, after the view is acquired, the

1

2 struct View_data {
3 /* shared array where conflict occurs,
4 accessed in tx */
5 shared word hot_array[A1];
6

7 /* shared array where each thread accesses
8 its own subarray, so does not cause
9 conflict, but still needs rollback

10 should tx be aborted */
11 shared word mild_array[A2];
12

13 /* private to each thread, can be accessed
14 either inside or outside tx.
15 if accessed inside tx and tx aborted
16 then needs to roll back changed */
17 thread_local word cold_array[A3];
18 };
19

20 View_data views[2];
21

22 each thread:
23

24 for loops:
25 do
26 acquire view 1 or 2 randomly
27 in acquired view:
28 perform
29 r1 reads and w1 writes to the shared hot_array, and
30 r2 reads and r2 writes to the shared mild_array
31 in *random order*
32 each access touches a random element (word) in
33 the shared hot_array, or in the
34 dedicated subarray within the shared mild_array
35

36 between two accesses to shared arrays, there will
37 also be r3i reads and w3i writes to the thread-local
38 cold array, and NOPi instructions
39 release view
40

41 /* activities outside transactions:
42 perform r3o reads and w3o writes to the
43 thread-local array
44 perform NOPo instructions
45 done

Figure 3. Pseudocode of the modified Eigenbench application

transaction can access either object 1 (with high contention)

or object 2 (with low contention). Accesses to object 1 and 2

have the same patterns as the accesses to view 1 and 2 in the

“multi-view” version.

B. Intruder

Intruder from the STAMP benchmark suite is a memory-

intensive TM application. In this application, a dictionary

is used to store partial results, and jobs are handled by a
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Table II
EIGENBENCH PARAMETERS FOR THE MULTI-VIEW MICROBENCHMARK

View 1 2

N 16

loops 100k 100k

A1 256 16k

A2 16k 16k

A3 8k 8k

R1 80 10

W1 20 10

R2 10 10

W2 10 10

R3i 0 5

W3i 0 1

NOPi 0 20

R3o 0

W3o 0

NOPo 0

centralized task queue. Since the task queue and the dictionary

are never accessed together in the same transaction, they are

allocated in separate views in the “multi-view” version. Default

parameters “-a10 -l128 -n262144 -s1” are used.

C. Experimental Results

All tests are carried out on a Dell PowerEdge R905 server

with four AMD Opteron 8380 quad-core processors running

with 2.5GHz and 16GB DDR2 memory. Linux kernel 2.6.32

and the compiler gcc-4.4 are used during benchmarking. All

programs are compiled with the optimization flag -O3.

As mentioned previously, δ(Q) in Observations 1 and 2 is

estimated with Equation 5. rdtsc() is used to measure the CPU

cycles spent in aborted transactions and successful transactions.

The rest of this section will show the results on VOTM-

OrecEagerRedo and VOTM-NOrec.

1) VOTM-OrecEagerRedo: In this part of the experiment,

the “single-view” version of Eigenbench, which has a high

contention object and a low contention object placed in the

same view, and the real TM application Intruder, are run with

the admission quota Q fixed to 1, 2, 4, 8 and 16 respectively,

without dynamic adjustment during runtime. In all tests, the

total number of threads (N ) is fixed to 16, and thus the Q = 16
case is equivalent to the conventional TM that has no restriction

of admissions.

Table III
SINGLE-VIEW EIGENBENCH WITH VOTM-ORECEAGERREDO

Q 1 2 4 8 16

Runtime(s) 63.8 65.7 241.2 2698 livelock

#abort 0 7.01m 178m 5.26G livelock

#tx 3.2m 3.2m 3.2m 3.2m 3.2m

CPUcyclesaborted tx 0 101G 2.08T 49.8T livelock

CPUcyclessuccessful tx 145G 205G 216G 231G livelock

δ(Q) N/A 0.49 3.21 30.7 livelock

In the single-view version of Eigenbench, Table III confirms

that from Q = 4 to Q = 16 (livelock), the contention is

high and δ(Q) > 1, which suggests that we should decrease

Q according to Observation 1, and the runtime is shorter by

lowering Q at these ranges. Therefore, Observation 1 is correct

for Q = 4, Q = 8 and Q = 16. At Q = 2, delta(Q) is much

smaller than 1, which suggests that Q should not be further

reduced according to Observation 1. However, the runtime is

slightly decreased when Q is further reduced to 1. This could

be attributed to the fact that at Q = 1, RAC falls back to

the lock-based mode and TM mechanism is not used to access

the shared memory. Since the TM overhead is removed, the

performance is further improved. However, Observation 1 has

not taken this special optimization into account.

Table IV
SINGLE-VIEW INTRUDER WITH VOTM-ORECEAGERREDO

Q 1 2 4 8 16

Runtime(s) 113 91.3 47.6 25.3 17.4

#abort 0 3.10k 7.31m 10.5m 14.4m

#tx 23.4m 23.4m 23.4m 23.4m 23.4m

CPUcyclesaborted tx 0 6.53G 19.9G 49.3G 100G

CPUcyclessuccessful tx 124G 287G 291G 299G 311G

δ(Q) N/A 0.02 0.02 0.02 0.02

In the single-view version of Intruder, At every Q, δ(Q) is

much smaller than 1, which suggests that Q should be increased

according to Observation 1. Since Q = 16 has the shortest

runtime, Observation 1 is true in the single-view version of

Intruder.

Now we compare the single-view and the multi-view ver-

sions of Eigenbench.

In order to test how RAC behaves in view 1 (with high con-

tention), we manually set Q2 of view 2 (with low contention)

to 16 which is the optimal value suggested by Observation 1.

However, Q1 is manually set to different values to test whether

Observation 1 is correct for individual views.

In the following tables, the individual statistics of each view,

including the number of aborts, transactions (tx), CPU cycles

spent in aborted and successful transactions, and δ(Q) are

shown. The subscript indicates the identity of the view (for

example, Q1 indicates Q for view 1). Though Q2 of view 2

is always set to 16, when Q1 is set to different values, the

statistics of view 2 are changed accordingly in the tables.

Table V
MULTI-VIEW EIGENBENCH WITH VOTM-ORECEAGERREDO

Q1 1 2 4 8 16

Runtime(s) 24.1 75.0 306 3276 livelock

#abort1 0 18.3m 246m 6.57G livelock

#tx1 1.6m 1.6m 1.6m 1.6m livelock

CPUcyclesaborted tx1
0 268G 2.83T 61.3T livelock

CPUcyclessuccessful tx1
52.7G 93.5G 104G 118G livelock

δ(Q1) N/A 2.87 9.06 74.2 livelock

#abort2 25.2k 6.94k 1.58k 178 livelock

#tx2 1.6m 1.6m 1.6m 1.6m livelock

CPUcyclesaborted tx2
1.16G 320m 74.7m 8.48m livelock

CPUcyclessuccessful tx2
116G 116G 116G 118G livelock

δ(Q2) N/A 0.003 0.0002 0 livelock

For the multi-view Eigenbench, Table V shows that δ(Q1)
is larger than 1 for all Q1, which suggests that Q1 should

be decreased to 1, which is the actual optimal value of Q1.

Therefore, in this case, Observation 1 is correct. In addition,

the optimal runtime of the multi-view version (24.1s) is shorter
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Table VI
PERFORMANCE OF ADAPTIVE RAC IN VOTM-ORECEAGERREDO

single-view multi-view multi-TM TM
Application time(s) Q #abort time(s) Q1 Q2 #abort time(s) #abort time(s) #abort
Eigenbench 65.1 2 7.52m 24.8 1 16 1.07m livelock livelock
Intruder 17.7 16 18.2m 17.4 16 16 49.5m 17.2 14.2m 17.3 15.0m

than the optimal runtime of the single-view version (63.8s).

Therefore, Observation 2 is correct since the runtime of multi-

view is shorter than the runtime of single-view.

Table V also shows that δ(Q2) and the number of aborts in

view 2 decreases as Q1 increases. This is expected because as

Q1 increases, contention of view 1 increases, and therefore

wasted time in aborted transactions accessing view 1 will

also increase. As a result, the time spent outside view 2 will

increase. Therefore the contention of view 2 will decrease.

In the multi-view version of Intruder, where both Q1 and

Q2 are set to 16, The runtime is 17.4s. Both δ(Q1) and δ(Q2)
are equal to 0.01, indicating little contention in both views,

thus both Q1 = 16 and Q2 = 16 (the number of threads) are

optimal. Since both views have low contention, the multi-view

version has only slight performance advantage over single-view,

as shown in Table VI.

Table VI shows how RAC can adapt to contention situation

and adjust Q to the optimal value. For Eigenbench, RAC

prevents livelock in both single-view and multi-view by re-

stricting Q. In single-view, access to data in object 2 (with low

contention) is unnecessarily hindered by RAC, as RAC can

only consider overall contention as a whole, and set the overall

Q to 2. However in multi-view, RAC is able to accurately set Q
of view 1 (with high contention) to 1, without hindering access

to view 2, hence gives a 200% performance improvement over

single-view.

In Intruder, the very low values of δ(Q) (0.02 for single-view

at Q = 16 and 0.01 for multi-view at Q1 = Q2 = 16) suggest

that the contention is not high enough to justify reducing

the value of Q in both single-view and multi-view. Anyway,

Table VI shows the adaptive RAC has correctly set Q to

the maximum in all cases. In addition, compared with multi-

TM, multi-view shows little extra overhead from the RAC

mechanism in VOTM.

2) VOTM-NOrec: In this part of the experiment, Q is fixed

to 1, 2, 4, 8 and 16 respectively without dynamic adjustment

during runtime.

Table VII
SINGLE-VIEW EIGENBENCH WITH VOTM-NOREC

Q 1 2 4 8 16

Runtime(s) 64.0 46.1 35.1 34.5 33.6

#abort 0 648k 2.91m 8.25m 14.0m

#tx 3.2m 3.2m 3.2m 3.2m 3.2m

CPUcyclesaborted tx 0 27.5G 141G 431G 718G

CPUcyclessuccessful tx 146G 188G 192G 196G 205G

δ(Q) N/A 0.15 0.25 0.31 0.23

Table VIII
SINGLE-VIEW INTRUDER WITH VOTM-NOREC

Q 1 2 4 8 16

Runtime(s) 113 86.7 55.1 52.7 49.3

#abort 0 338k 1.01m 1.84m 5.21m

#tx 23.4m 23.4m 23.4m 23.4m 23.4m

CPUcyclesaborted tx 0 10.8G 54.9G 208G 611G

CPUcyclessuccessful tx 123G 262G 346G 601G 1.39T

δ(Q) N/A 0.04 0.05 0.05 0.03

In the single-view version of both Eigenbench and Intruder,

Table VII and VIII show that δ(Q) is much smaller than 1 in

all cases. Therefore, according to Observation 1, Q should not

be decreased. The results of runtime show that Observation 1 is

correct for both applications, since the runtime of Q = 16 is the

shortest for both cases. The runtime of Q = 16 for VOTM is

similar to the runtime of the original TM system (see Table X),

showing that the extra overhead of RAC is low.

Now we examine the the performance of RAC in multiple

views. As explained before, Q2 in Eigenbench is fixed to 16, as

view 2 has low contention and does not need access restriction.

However Q1 is manually set to different values to test whether

Observation 1 is correct for individual views.

Table IX
MULTI-VIEW EIGENBENCH WITH VOTM-NOREC

Q1 1 2 4 8 16

Runtime(s) 24.1 32.7 32.3 31.7 30.2

#abort1 0 1.60m 4.60m 9.73m 14.6m

#tx1 1.6m 1.6m 1.6m 1.6m 1.6m

CPUcyclesaborted tx1
0 79.5G 233G 487G 682G

CPUcyclessuccessful tx1
52.5G 73.8G 73.8G 75.7G 78.4G

δ(Q1) N/A 1.07 1.05 0.92 0.58

#abort2 7.46k 5.14k 5.25k 5.38k 5.69k

#tx2 1.6m 1.6m 1.6m 1.6m 1.6m

CPUcyclesaborted tx2
335m 221m 226m 234m 251m

CPUcyclessuccessful tx2
109G 108G 108G 108G 108G

δ(Q2) N/A 0.002 0.0001 0.0003 0.0002

In Eigenbench, Table IX shows that at Q1 = 16, δ(Q1) is

much smaller than 1, therefore it does not need to reduce Q1,

and the actual runtime of Q1 = 16 is indeed slightly shorter

than Q1 of 2, 4 and 8. However, δ(Q1) increases to around

1, for Q1 = 2 and Q1 = 4. In these cases, Observation 1

indicates an increase of contention when Q is decreased, and

does not quite reflect the real situation. One reason is that,

in NOrec, time wasted in ultimately-aborted transactions is

minimal because conflicts will be detected at the next read

operation, and thus the theoretical model of Observation 1

does not match well with the handling of aborted transactions

in NOrec. Another reason is that, since NOrec takes cares of

the contention control which has not been taken into account
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by the approximation Equation 5, the CPU cycles by aborted

transactions cannot truly reflect the time wasted by aborted

transactions in NOrec. Further research is required to refine

the theoretical model to accommodate this issue. This issue

will be further discussed later in this section.

Table IX also shows the runtime of Q1 = 1 (24.1s) is much

shorter than the other Q1 values set to 2-16. As mentioned

before, this performance improvement at Q1 = 1 can be

attributed to switching to lock-based approach at Q = 1,

which avoids the TM overhead. Therefore, as mentioned in

Section II-C, the programmer can optimize performance by

manually setting the Q of a view to 1 if access of the view

is known to be highly contentious.

In the multi-view version of Intruder, at Q1 = Q2 = 16,

the runtime is 30.7s, as shown in Table X. Since both δ(Q1)
and δ(Q2) are equal to 0.0004, there is little contention in both

views and Q1 = Q2 = 16 has the best performance.

Table X also show how adaptive RAC performs in VOTM-

NOrec for both Eigenbench and Intruder.

In Eigenbench, the contention is not high enough to justify

the decrease of Q by RAC in both single-view and multi-

view versions, and RAC performs correctly by not restrict-

ing the admission quota Q in both cases. However there

is 10% performance improvement in the multi-view version

over single-view and NOrec, even when none of the views is

restricted to admission. In addition, with RAC disabled, the

multi-TM version also gives similar improvement over NOrec.

This performance improvement is because of splitting data into

two views which reduces contention on the global clock in

NOrec. In VOTM such as multi-view and multi-TM, each view

is essentially a separate TM system and has its own global

clock.

For Intruder, Table X shows that in both single-view and

multi-view, the values of Q of all views are settled at 16. RAC

performs correctly here, as the very low δ(Q) values at Q = 16
mentioned before suggest the contention is not high enough in

single-view and multi-view.

Although Q stays at 16 in all cases, multi-view has a runtime

of 30.7s, which has a 60% improvement over single-view,

and 55% improvement over NOrec. multi-view has similar

performance as multi-TM, and both are faster than single-view

and NOrec. The above results show that splitting shared data

into multiple views can improve performance for even the most

efficient TM system NOrec. The performance gain is from the

reduction of contention on the global clock, as discussed above.

It is worth noting there is a slight runtime improvement in

multi-view over multi-TM in both Eigenbench and Intruder, and

the number of aborts in the multi-TM version in both cases are

slightly higher. This could be attributed to the extra overhead of

RAC causing a small delay in restarting an aborted transaction,

which reduces the contention slightly on the global clock.

However, we don’t have experimental evidence to support this

claim yet. We need further microscopic investigation on the

results.

D. How RAC can improve performance

The microbenchmark illustrates that in highly-contentious

situations, RAC can improve performance by preventing live-

locks in encounter-time locking algorithms [11, 12] such

as OrecEagerRedo. In encounter-time locking algorithms, a

transaction locks a shared memory location at the first write

operation. Then when it is accessed by other transactions

before the owner transaction commits, a conflict is detected,

and one or more transactions will abort and restart. However

these restarting transaction may cause further conflicts with

the originally-winning transaction before it commits, and may

cause the originally-winning transaction to ultimately abort.

This can become a vicious cycle and eventually no transactions

can successfully commit. As a result, no progress is made, and

this is known as livelock. However in this situation, δ(Q) will

rise very quickly, and RAC will promptly drive Q down to

a very low value, such as 1, thus ensuring progress. In the

case of multiple views, if one of the views livelocks, RAC can

restrict access to that view without affecting concurrency of

the other views. In this way, using multiple views in VOTM

can considerably improve performance over the single-view

version, as demonstrated in the microbenchmark.

Commit-time locking TM (CTL) algorithms such as

NOrec [8] locks an address at commit time. Therefore, in CTL

algorithms, conflicts are generally detected at commit-time.

When a transaction detects a conflict when it tries to commit,

it may abort and restart. However, since those transactions

that it has conflicts with can be committed successfully, the

aborted transaction is impossible to have conflicts with those

committed transactions again. In this way, CTL algorithms can

avoid livelock.

If conflicts are detected at commit time, then the time

between the occurrence of a conflict (i.e. a location in its

readset is written to by another committing transaction while

the current transaction is still running) and the commit of

the current transaction could be wasted in a transaction that

ultimately fails, although the time wasted will be limited to

the aborted transaction itself. This is different from the case

of livelocking in ETL algorithms where the wasted time can

involve multiple other transactions.

However in some advanced CTL algorithms such as NOrec,

the readset is validated at every read operation after the first

write operation in a transaction. Therefore, conflict will be

quickly detected at the next read operation after the occurrence

of the conflict. As a result, the time wasted by transactions that

ultimately abort will be very little. Since the aim of RAC is

to restrict access to save this wasted time, the benefit of RAC

in NOrec diminishes, as shown in the microbenchmark and

Intruder.

However the cost of NOrec is that its frequent read-set

validation causes considerable contention at the global clock in

its metadata. Therefore, it performs worse than OrecEagerRedo

in memory-intensive applications such as Intruder.

For NOrec, VOTM can help in two ways:

• Reduce contention on global clock by splitting shared

objects into multiple views, where each view is essentially
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Table X
PERFORMANCE OF ADAPTIVE RAC IN VOTM-NOREC

single-view multi-view multi-TM TM
TM Algorithm time(s) Q #abort time(s) Q1 Q2 #abort time(s) #abort time(s) #abort
Eigenbench 33.7 16 14.1m 30.2 16 16 14.1m 30.5 14.2m 33.7 14.1m
Intruder 52.6 16 5.2m 30.7 16 16 1.13m 30.9 1.20m 47.8 5.0m

a separate TM system with its own global clock.

• For a view that is accessed by memory-intensive but short

transactions (i.e. little computation work), performance

can be optimized by manually setting Q of that view to 1,

which allows RAC to fall back to lock-based mode, thus

removing the high TM overhead.

IV. RELATED WORK

Generally, approaches to concurrency control can be classi-

fied into two types: transactional scheduling and adaptive locks.

We will also discuss work on adaptive transactional memory.

A. Transactional scheduling

Transactional scheduling can control the admission of trans-

actions when contention is high. It can prevent conflicts before

they occur, therefore reducing wasted work on aborted trans-

actions. For example, transaction scheduling algorithms such

as [13] use a thread-local contention score. When a thread

experiences high contention, it queues the starting transaction

to a central scheduler, which will execute queued transactions

serially. A similar approach is adopted in [14], except when a

thread experiences high contention it uses a heuristic approach

that predicts read and write sets of the starting transaction using

read and write sets of previous transactions of the threads. If

any address in the predicted read and write sets is being written

by any other currently executing transactions, then the starting

transaction will be queued to be executed serially. Otherwise,

the transaction executes immediately. This algorithm relies on

heuristic prediction of what will be read/written in the starting

transactions. The admission control algorithm in [15] also

adopts a similar approach.

All transaction scheduling algorithms described above treat

the entire TM with the same scheduling decision. Therefore,

access to objects of low contention can be unreasonably re-

stricted due to the high contention of other objects in TM. Also

the statistics collected for the entire TM are not as accurate as

those collected per view basis. Since RAC in VOTM treats each

view individually, the estimation of δ(Q) is more accurate.

B. Adaptive locks

The speculative lock elision (SLE)-based model [16] was

proposed to avoid unnecessary exclusive accesses in lock-based

programs. An elidable lock can be acquired “speculatively”

(using TM) or “non-speculatively” (using mutex). At any time,

an elidable lock can be acquired speculatively by multiple

threads, but only one thread can hold an elidable lock non-

speculatively at any time.

The adaptive lock model in [17] has a similar approach,

except a thread trying to acquire the lock in mutex mode must

wait until all existing threads holding the lock in transaction

mode to finish.

Like VOTM, both SLE and adaptive lock models have

separate access control on each elidable lock, to ensure re-

strictions placed by the system on locks with high contention

will not unnecessarily affect concurrency of accessing other

elidable locks with low contention. These models either allow

all threads to hold the elidable lock in speculative mode, or only

allow exclusive access to one thread during non-speculative

(mutex) mode. However, as shown in [3], there are some cases

where the optimal admission quota of a lock/view is actually

between 1 and N . Therefore, the RAC scheme can achieve

a superior performance by finding out the optimal admission

quota to achieve the optimal concurrency rather than only

choosing between the two extremes – exclusive access to one

thread or admitting all threads.

C. Adaptive Transactional Memory

There are also TM systems, such as [18] by the RSTM group,

that choose a TM algorithm at runtime according to the access

pattern and contention situation of the transactional memory.

These adaptive TM systems use machine learning methods

such as decision trees and neural network to learn from a

training set of microbenchmarks and TM algorithms, to create

an executable adaptive policy. Then, when a real application

is run, “profiles” are taken at some pre-defined events such

as thread creation/destruction and consecutive aborts. These

profiles are subsequently used to compare with the adaptive

policies to select the best TM algorithm on the fly. For example,

when the contention increases, the system can switch to a more

pessimistic algorithm.

Adaptive TM is orthogonal to VOTM. It can be adopted

by VOTM, where different views can have different access

patterns, and therefore have different optimal TM algorithms.

We will investigate this area in the near future.

V. CONCLUSIONS AND FUTURE WORK

As shown in the experimental results, VOTM can effectively

prevent livelocks in encounter-time locking TM systems. More-

over, by partitioning shared data with different access patterns

into different views, VOTM can further improve performance

by allowing RAC to separately control access to each view

according to its contention. Therefore, RAC can easily restrict

access to a view with high contention without unnecessarily

restricting access to other views with low contention. In this

way, VOTM can optimize concurrency control and provide

a better performance to single-view applications. It has also

a better performance than the TM systems without RAC in

situations of high contention.
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The RAC mechanism alone cannot improve performance

of NOrec dramatically, since NOrec is livelock-free and its

algorithm limits the time wasted by ultimately-doomed trans-

actions. However, NOrec can have high contention in its

global clock for memory-intensive applications. The memory-

intensive application Intruder shows that VOTM can improve

NOrec performance by partitioning shared data into multiple

views, since it can reduce contention on the global clock by

using a separate TM system for each view.

In the near future, we will refine the RAC model to take

better account for TM overhead in different TM systems.

We will further investigate the potential benefits of applying

adaptive TM algorithms in each view of VOTM. In addition,

we will also compare VOTM to other transactional scheduling

and adaptive lock systems to identify performance gains and

overheads of different applications.
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