Locabus: A Kernel to Kernel Communication
Channel for Cluster Computing

Paul Werstein, Mark Pethick, and Zhiyi Huang

Department of Computer Science
University of Otago
Dunedin, New Zealand
werstein@cs.otago.ac.nz, mpethick@cs.otago.ac.nz, hzyQcs.otago.ac.nz

Abstract. This paper proposes a kernel to kernel communication sys-
tem for use in cluster computers. It is implemented directly on the Ether-
net data link layer. This allows use of Ethernet’s inherent broadcast ca-
pability. This system is implemented and performance tests are run. The
results show significant improvement in broadcast performance.

1 Introduction

Many of the operations of cluster computers and the parallel processes running
on them rely on some message passing system. The underlying network protocol
for such message passing is usually TCP /IP or UDP/IP. The goal of this research
is to develop a high performance, reliable, lightweight communications channel
for use in cluster computers. This channel makes use of Ethernet’s broadcast
capability as well as providing point-to-point communications.

In the cluster environment, we can make optimizations over TCP/IP since
there is no need for routing. Ethernet switches are commonplace, and we can
assume a highly reliable network where packet loss is rare.

The proposed communications channel is called Locabus. It provides a reli-
able, connectionless, datagram-based service for broadcast traffic within a cluster
computer environment. It also provides for point-to-point communications. It is
implemented as a kernel module for the Linux kernel.

The rest of this paper is organized as follows. Section 2 describes related
work. Section 3 give the details of the Locabus implementation. A preliminary
set of performance results are given in Section 4. Finally, we give conclusions
and directions for further research in Section 5.

2 Related Work

Many reliable broadcast and multicast protocols have been proposed for wide
area networks. Examples of broadcast protocols include [1, 2]. Examples of multi-
cast protocols are [3-8]. In contrast, this research concentrates on broadcast in
a cluster of computers. Such an environment allows us to take advantage of the

characteristics of the environment including rather reliable transmission, short
delays, and lack of need for routing decisions.

Lane, Daniels, and Yuan in [9] study a cluster environment, but their studies
are based on implementing multicast using the UDP interface. In this research,
our approach is implemented directly on the Ethernet interface rather than using
UDP/IP. This approach contrasts with [10] which implements MPI by modifying
the Ethernet device driver.

Four types of protocols can be used to assure reliability of broadcast or
multicast transmissions: sender-initiated, receiver-initiated, tree-based, or ring-
based protocols [11]. In the sender-initiated approach, a message is broadcast
and each receiver unicasts an ACK to the sender. This leads to the ACK implo-
sion problem with a large number of nodes. In the receiver-initiated approach,
receivers inform the sender when they detect an error or missing packet. Quite
often a polling technique is used to determine periodically that receivers are
alive and have received all messages. In a tree-based protocol, nodes are divided
into groups with each group having a leader. The group leader is responsible
for reliable delivery within the group and informing the sender of errors. In a
ring-based protocol, receivers take turns being the token site. The token site is
responsible for sending an ACK to the sender. Receivers send NAKs to the token
site when they detect an error. Since the token site rotates among the receivers,
the sender can determine the status of the receivers.

3 Locabus

In designing the Locabus communications system, certain assumptions are made
to take advantage of the cluster environment. These assumptions include:

— The underlying network is Ethernet. This allows use of its broadcast capa-
bilities. The network is unreliable, but the error rate is very low.

— An Ethernet switch is used so collisions are rare.

— All nodes in the cluster are on a private network with a gateway to any public
network. The gateway takes care of authentication of any outside commu-
nications. Thus there is no need for authentication or encryption between
nodes. There also is no need for routing.

— The underlying operating system is homogenous. In this case, Linux is used.
It is not necessary that the machines be homogenous in capabilities or pro-
cessor type.

To minimise administration, Locabus employs a distributed, self-discovery
technique. As nodes are booted in the cluster, they periodically broadcast a
discovery message for up to one minute. The existing nodes reply with a list of
the nodes they know about. Thus each node learns about the presence of all
other nodes.

Timestamps are used to detect reconnects. A reconnect causes other nodes
to reset the information they maintain about the reconnected node. This action

provides for an orderly recovery from a node which fails and recovers. A probe
function is provided to deal with missing nodes.

The Locabus packet header is shown in Table 1. The type field specifies
the type of packet. Currently implemented types include: data, ACK, NAK,
connection establishment. The proto field specifies the protocol for the packet.
The currently implemented protocols are described in Section 3.2. The node_to
and node_from fields specify the source and destination for the packet. This
allows for 65,535 nodes in a cluster. OXFFFF is the address used for broadcast.
Currently, the lower 16 bits of the IP address are used for these fields since they
are unique in the cluster and require no additional administration.

Table 1. Locabus packet

Field |Type Description
type _u8 Packet type
proto | __u8 Application protocol identifier
node_to |-_ul6|Recipient node (0OxFFFF = broadcast)
node_from|__ul6 Sending node
seq-num |-_ul6 Packet Sequence Number
ack_num |__ul6 Ack num if ack packet
len _ul6 Packet length including header
window |__ul6 Current credit window of sender
csum |__ul6| 16 bit checksum of data + header

Seq_num is the packet sequence number. Locabus numbers packets, not bytes
as in TCP/IP. Ack_num is an acknowledgment number if the packet is performing
acknowledgment. Piggyback ACKs are used when possible. The total length of
the packet including the header is specified in the len field. Window is used
to implement a TCP /IP-style credit system for the number of unacknowledged
packets allowed. Finally, csum is a 16 bit checksum of the data and header.
The data follows the header. The data size can be up to 1484 bytes to maintain
compatibility with the underlying Ethernet network.

The Locabus system uses a 3-way handshake to establish connections. The
disconnect is done by a 2-way handshake. The kernel maintains 160 bytes of
state data per connection in contrast to 360 bytes required for TCP.

3.1 Flow Control

When doing point-to-point or unicast communication, a go-back-N flow control
scheme is employed. The window size is 1024 with an acknowledgment time of
0.2 seconds. Locabus uses 2 levels of cache for socket buffers. The first level is
a set of per node buffers with the hardware headers precomputed. The second
level is a set of general buffers.

For broadcast communication, Locabus uses a NAK based protocol with
polling and random acknowledgment. This design prevents the ACK implosion

problem associated with ACK based broadcast and is simpler to implement than
a tree based or ring based protocol. It also reduces the workload on the receivers.

3.2 Implementation Details

Figure 1 shows the overall design of the system. The basic Locabus system is
implemented as a kernel module. This is shown in the figure as the mod_locabus
box.

icati Monitor
MPI Application Application
lib_LocaMPI Jproc/locamon Socket
Interface
User
Kernel
LocaMPI LocaMonitor LocaSock LocaExec Load balancing
mod_|ocabus
Linux Kernel

Fig. 1. Design of Locabus

Currently two protocols are implemented using Locabus. Those protocols
are locamonitor, and locasock. They are shown on the figure just below the
dashed line dividing kernel space from user space. The boxes for LocaFzrec and
load balancing represent research in process. Work is ongoing on a complete
implementation of MPI [12] called LocaMPI. Currently only the broadcast and
send /receive functions are implemented.

LocaSock implements a socket interface using Locabus as the communications
channel instead of TCP/IP or UDP/IP. LocaSock provides a reliable datagram
service with a maximum datagram size of 64KB. Existing UDP socket code can
be used simply by changing the domain from AF_INET to AF_LOCABUS. The
LocaSock header is shown in Table 2.

Sport and dport are the source and destination port numbers respectively.
Ident is a fragmentation identifier and frag is the fragment number. Nfrags is a
count of the total number of fragments in the packet.

LocaMonitor is a distributed cluster monitoring protocol. It also is imple-
mented as a kernel module. Each node which runs LocaMonitor periodically
broadcasts statistics such as CPU utilisation, memory usage, and disk and net-
work statistics. These statistics are collected by all nodes which maintain the

Table 2. LocaSock header

Field | Type Description

sport [__ul6 Source Port

dport |-_ul6 Destination Port

ident |-_ul6 Fragmentation Identifier
frag | --u8 fragment number

nfrags| __u8 |Number of fragments for packet

data in the /proc filesystem. A separate display application reads the /proc files
and displays the data in an humanly readable form. The data will be used in
the future for load balancing.

4 Performance Results

To determine the efficiency of the Locabus implementation, we conduct a bench-
mark of communication time. It compares the time to send data over the stan-
dard TCP/IP interface with the time for Locabus.

For this test, we implement MPI_Send(), MPI_Recv(), and MPI Beast() us-
ing Locabus as the underlying communications system. These functions are the
message sending, receiving, and broadcasting functions of MPI, respectively. We
compare these functions to the same functions that exist in the LAM implemen-
tation of MPI. This removes any computational costs associated with a particular
application.

The first benchmark tests the send/receive performance. It compares the
time to send/receive a varying number of 1KB messages between two nodes.
The results are shown in Figure 2. As expected, Locabus exhibits only a slight
performance increase owing to having not to use the IP layer software. The
performance increases slightly with increasing number of messages due to the
smaller overhead and smaller packet header size.

The second benchmark compares the performance of the broadcast perfor-
mance for 8192 1KB messages and 65,536 1KB messages with a varying number
of nodes. The results are shown in Figures 3 and 4, respectively. In this bench-
mark, a root node broadcasts a series of 1KB messages, and the receivers send
a single acknowledgment.

In both broadcast tests, LocaMPI outperforms standard MPI. The time for
LocaMPI is almost constant with a slight increase in time as the number of nodes
increases. This is due to the increasing number of ACKs required. For LAM/TCP
is increase is slightly worse than O(logy N). (The logy N line is shown on the
figures for reference.) This result is due to the need to decompose the broadcast
into a series of unicast messages.

T
LAM —+—
30 - LocaMPl —---—

w
o
@
a
o
E
[
0 L L L L L L
0 20000 40000 80000 80000 100000 120000
Number of 1K messages
Fig. 2. Send/receive benchmark
T T T
LAM —+—
14 |- LocaMPl ---<-—
LOGN -
12 -
10 -
3
@ 8 -
2
@
E
i
6 -
4
2
0 Il 1 Il Il 1 Il
0 5 10 15 20 25 30

Num Procs

Fig. 3. Broadcast benchmark (8192 1KB messages)

100

T
LAM —+—
LocaMP| ——-x--—

80 -

80 -

Time {secs)

40 -

[+] 1 1 1 1 1 1
o} 5 10 15 20 25 30

Num Procs

Fig. 4. Broadcast benchmark (65,536 1KB messages)

5 Conclusions

In this paper, we present a kernel to kernel communication system implemented
directly onto the Ethernet data link layer. This implementation allows the use
of Ethernet’s broadcast capability. The implementation is called Locabus.

Over the Locabus software, a number of protocols are built. They include
a socket interface (locasock) with is similar to Berkeley sockets. Locamonitor
allows each node to know the status of all other nodes. It makes extensive use of
Locabus’s broadcast capability. A MPI-like interface for parallel programming,
called LocaMPI, is partially implemented.

Our tests compare the LocaMPT’s send/receive and broadcast performance
to that of standard MPI. The broadcast benchmark tests show considerable
performance compared to using MPI over TCP/IP.

We are continuing to explore ways to use Locabus in a cluster environment.
The LocaMPI implementation is being developed so it has most of the functions
contained in the MPI standard. A set of parallel applications will be bench-
marked to determine their performance when using LocaMPI. Other areas cur-
rently under investigation include load balancing and remote process submission
and monitoring.

References

10.

11.

12.

. Kaashoek, M., Tanenbaum, A., Hummel, S., Bal, H.: An efficient reliable broadcast

protocol. ACM SIGOPS Operating Systems Review 23 (1989) 5-19
Melliar-Smith, P., Moser, L., Agrawala, V.: Broadcast protocols for distributed
systems. IEEE Transactions on Parallel and Distributed Systems 1 (1990) 17-25
Barcellos, M., Ezhilchelvan, P.: An end-to-end reliable multicast protocol using
polling for scalability. In: Proceedings of the Conference on Computer Communi-
cations (IEEE INFOCOM’98), San Francisco, California, USA (1998) 1180-1187
Crowcraft, J., Paliwoda, K.: A mulitcast transport protocol. ACM SIGCOMM
Computer Communication Review 18 (1988) 247-256

Floyd, S., Jacobson, V., Liu, C.G., McCanne, S., Zhang, L.: A reliable multicast
framework for light-weight sessions and application level framing. IEEE/ACM
Transactions on Networking 5 (1997) 784-803

Holbrook, H., Singhal, S., Cheriton, D.: Log-based receiver-reliable multicast for
distributed interactive simulation. ACM SIGCOMM Computer Communication
Review 25 (1995) 328-341

McKinley, P., Rao, R., Wright, R.: H-RMC: A hybrid reliable multicast protocol for
the Linux kernel. In: Proceedings of the IEEE/ACM SC-99 Conference, Portland,
Oregon, USA (1999)

Talpade, R., Ammar, M.: Single connection emulation (SCE): An architecture for
providing a reliable multicast transport service. In: Proceedings of the 15th Inter-
national Conference on Distributed Computing Systems (ICDCS ’95), Vancouver,
Canada (1995) 144-151

Lane, R., Daniels, S., Yuan, X.: An empirical study of reliable multicast proto-
cols over Ethernet-connected networks. In: Proceedings of the 2001 International
Conference on Parallel Processing (ICPP’01), Valencia, Spain (2001) 553-560
Dougan, C.: KMPI: Kernel-level message passing interface. Technical report, Finite
State Machine Labs (2003) http://hq.fsmlabs.com/~cort/papers/kmpi/kmpi.pdf.
Levine, B., Garcia-Luna-Aceves, J.: A comparison of reliable multicast protocols.
Multimedia Systems 6 (1998) 334-348

Gropp, W., Lusk, E., Skjellum, A.: A high-performance, portable implementation
of the MPI message passing interface standard. Parallel Computing 22 (1996)
789-828

