
Performance Comparison between VOPP and MPI

Z. Huang
�
, M. Purvis � , P. Werstein

�
�
Department of Computer Science

� Department of Information Science
University of Otago, Dunedin, New Zealand

Email:hzy@cs.otago.ac.nz, mpurvis@infoscience.otago.ac.nz, werstein@cs.otago.ac.nz

Abstract

View-Oriented Parallel Programming is based on Dis-
tributed Shared Memory which is friendly and easy for
programmers to use. It requires the programmer to divide
shared data into views according to the memory access pat-
tern of the parallel algorithm. One of the advantages of this
programming style is that it offers the performance poten-
tial for the underlying Distributed Shared Memory system
to optimize consistency maintenance. Also it allows the
programmer to participate in performance optimization of
a program through wise partitioning of the shared data into
views. In this paper, we compare the performance of View-
Oriented Parallel Programming against Message Passing
Interface. Our experimental results demonstrate a perfor-
mance gap between View-Oriented Parallel Programming
and Message Passing Interface. The contributing overheads
behind the performance gap are discussed and analyzed,
which sheds much light on further performance improve-
ment of View-Oriented Parallel Programming.
Key Words: Distributed Shared Memory, View-based
Consistency, View-Oriented Parallel Programming, Cluster
Computing, Message Passing Interface

1 Introduction

View-Oriented Parallel Programming (VOPP) [4, 5, 6] is
a programming style based on Distributed Shared Memory
(DSM). A DSM system can provide application program-
mers the illusion of shared memory on top of message-
passing distributed systems, which facilitates the task of
parallel programming in distributed systems. However, tra-
ditional DSM programs are far from efficient compared
with those using Message Passing Interface (MPI) [10].
The reason is that message passing is part of the design
of a MPI program and the programmer can finely tune the
performance of the program by reducing unnecessary mes-
sage passing. As for DSM, since consistency maintenance
[7] deals with the consistency of the whole shared mem-
ory space, there are many unnecessary messages incurred

This work was done while the first author was working as an
invited professor at EPFL, Switzerland.

in DSM systems. As we know, message passing is a signif-
icant cost for applications running on distributed systems.
Even worse, the programmer cannot help reduce those mes-
sages when designing a DSM program.

To help DSM optimize its performance as well as to al-
low programmers to participate in performance tuning such
as optimization of data allocation, we have proposed the
novel VOPP programming style for DSM applications [4].
VOPP programs perform significantly better than traditional
DSM programs [6]. The performance gain is two-fold.
First, the programmer is able to participate in performance
tuning with the VOPP primitives such as acquire view [6].
Second, consistency maintenance for views can be opti-
mized using the VOUPID protocol [5].

Even though VOPP programs are much more efficient
than traditional DSM programs, they are not as efficient
as MPI programs when the number of processors becomes
larger. Our ultimate goal is to make VOPP programs as effi-
cient as their MPI counterparts. In this paper, we are going
to compare VOPP and MPI in terms of performance and to
investigate the reasons behind the performance gap.

The rest of this paper is organised as follows. Section 2
briefly describes the VOPP programming style and its un-
derlying View-based Consistency model. Section 3 demon-
strates the performance gap between VOPP and MPI. The
contributing overheads behind the gap are analyzed and dis-
cussed. Finally, our future work on VOPP is suggested in
Section 4.

2 VOPP and View-based Consistency

A view is a concept used to maintain consistency in dis-
tributed shared memory. It consists of data objects that
require consistency maintenance as a whole body. Views
can be either defined in programs using the primitive al-
loc view with size of the view as its argument, or a view
can be detected automatically by the system as long as the
programmer uses the primitives such as acquire view and
release view whenever a view is accessed. Acquire view
means acquiring exclusive access to a view, while re-
lease view means having finished the access. However, ac-
quire view cannot be called in a nested style. For read-only
accesses, acquire Rview and release Rview are provided,
which can be called in a nested style. By using these prim-
itives, the focus of the programming is on accessing shared

objects (views) rather than synchronization and mutual ex-
clusion.

The programmer should divide the shared data into
views according to the nature of the parallel algorithm and
its memory access pattern. Views must not overlap each
other. The views are decided in the programmer’s mind or
defined using alloc view. Once decided, they must be kept
unchanged throughout the whole program. The view prim-
itives must be used when a view is accessed, no matter if
there is any data race or not in the parallel program. In-
terested readers may refer to [6] and [4] for more details
about VOPP.

In summary, VOPP has the following features:
� The VOPP style allows programmers to participate in

performance optimization of programs through wise
partitioning of shared objects (i.e. data allocation) into
views and wise use of view primitives. The focus of
VOPP is shifted more towards shared data (e.g. data
partitioning and allocation), rather than synchroniza-
tion and mutual exclusion.

� VOPP does not place any extra burden on program-
mers since the partitioning of shared objects is an im-
plicit task in parallel programming. VOPP just makes
the task explicit, which renders parallel programming
less error-prone in handling shared data.

� VOPP offers a large potential for efficient implemen-
tations of DSM systems. When a view primitive such
as �������	��
� ������� is called, only the data objects associ-
ated with the related view need to be updated. An opti-
mal consistency maintenance protocol called VOUPID
has been proposed in [5] based on this simplicity.

To maintain the consistency of views in VOPP pro-
grams, a View-based Consistency (VC) model has been pro-
posed [4]. In the VC model, a view is updated when a
processor calls acquire view or acquire Rview to access the
view. Since a processor will modify only one view between
acquire view and release view, which should be guaranteed
by the programmer, we are certain that the data objects
modified between acquire view and release view belong to
that view and thus we only update those data objects when
the view is accessed later. When a view is acquired, consis-
tency maintenance is restricted to the view.

The Sequential Consistency (SC) [9] of the VOPP pro-
grams can be guaranteed by the VC model, which has been
proved in [4].

3 Performance comparison

The applications we use for performance comparison in-
clude Integer Sort (IS), Gauss, Successive Over-Relaxation
(SOR), and Neural network (NN). IS ranks an unsorted se-
quence of � keys. The rank of a key in a sequence is the
index value � that the key would have if the sequence of
keys were sorted. All the keys are integers in the range
[0, �������], and the method used is bucket sort. The mem-
ory access pattern is very similar to the pattern of our sum
example in [4]. Gauss implements the Gauss Elimination

algorithm in parallel. Multiple processors process a ma-
trix following the Gaussian Elimination steps. SOR uses a
simple iterative relaxation algorithm. The input is a two-
dimensional grid. During each iteration, every matrix ele-
ment is updated to a function of the values of neighboring
elements. NN trains a back-propagation neural network in
parallel using a training data set. After each epoch, the er-
rors of the weights are gathered from each processor and the
weights of the neural network are adjusted before the next
epoch. The training is repeated until the neural network
converges.

The following figures show the speedups of the applica-
tions coded with VOPP and MPI respectively. The speedups
of TreadMarks [1], which is a state-of-the-art DSM system,
are shown as a base of reference. All performance tests are
carried out on our cluster computer called Godzilla. The
cluster consists of 33 PCs running Linux 2.4, which are con-
nected by a N-way 100 Mbps Ethernet switch. Each of the
PCs has a 350 MHz processor and 192 Mbytes of memory.
The page size of the virtual memory is 4 KB. Our DSM
system, VODCA, is used to run the VOPP programs, and
MPICH [3] is used to run the MPI programs.

Figure 1 shows that the performance of VOPP is very
close to and comparable to MPI 1. Figure 2, Figure 3, and
Figure 4 show bigger performance gaps between VOPP and
MPI, especially when the number of processors is larger.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Num Procs

Integer Sort: Speedup

MPI
VOPP

TMK

Figure 1: Speedup of IS on VOPP and MPI
There are three overhead sources contributing to the per-

formance gap: barriers, delayed data transmission, and con-
sistency maintenance.

3.1 Barriers

When comparing the VOPP programs with the MPI pro-
grams, we find there are more barriers in the VOPP pro-
grams than in the MPI programs. There are almost no bar-
riers in our MPI programs, while there are many barriers

1In the figures, TMK refers to TreadMarks.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Num Procs

SOR: Speedup

MPI
VOPP

TMK

Figure 2: Speedup of SOR on VOPP and MPI

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Num Procs

Gauss: Speedup

MPI
VOPP

TMK

Figure 3: Speedup of Gauss on VOPP and MPI

called in our VOPP programs. In IS 122 barriers are called;
SOR calls 102 barriers; Gauss calls 4098 barriers; and NN
calls 473 barriers. Accordingly the performance gaps for
IS and SOR are smaller, while for Gauss and NN they are
larger.

As we know, barriers incur many messages, especially
when the number of processors becomes larger. Moreover,
barriers cause synchronization among all processors and
thus every processor often waits for the slowest processor.
This significantly slows down parallel processing when bar-
riers are frequently called.

To explain why there have to be more barriers in VOPP
programs, we use a typical producer-consumer problem as
an example. Suppose processor 0 is the producer of variable
� , and all processors are consumers of the variable. The
MPI code is as below.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Num Procs

Neural Network: Speedup

MPI
VOPP

TMK

Figure 4: Speedup of NN on VOPP and MPI

if(proc_id == 0){
produce(x);
send x to all other processors;

}

if(proc_id != 0)
receive x from processor 0;

consume(x);

For the same problem, the VOPP code is as below.

if(proc_id == 0){
acquire_view(1);
produce(x);
release_view(1);

}

barrier(0);

acquire_Rview(1);
consume(x);
release_Rview(1);

In the VOPP code, the barrier has to be used to make sure
the processors consume the variable � after it is produced.
This situation is very typical for shared memory based pro-
grams. In contrast, in the MPI code, there is no need to use
a barrier for synchronization, since the receive primitive is
synchronized with the send primitive and is always finished
after the send primitive.

To make it even worse, when the VOPP code is executed
in a loop as below, another barrier has to be added to make
sure the consumers will not overtake the producer in the
next loop. As for the MPI code, there is no problem for it to
be executed in a loop, as the consumers will never overtake
the send primitive.

for(i=0;i<N;i++){
if(proc_id == 0){

acquire_view(1);
produce(x);
release_view(1);

}

barrier(0);

acquire_Rview(1);
consume(x);
release_Rview(1);

barrier(1);
}

The above situation occurs in our VOPP programs with
Gauss and NN. To verify that overhead of barriers is a sig-
nificant contributor behind the performance gap, we inten-
tionally make the number of barriers in VOPP programs the
same as that in MPI programs. We remove some barriers
from the VOPP programs and add some barriers to the MPI
programs. The performance of those VOPP and MPI pro-
grams for SOR and Gauss is shown in Figure 5 and Figure 6.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Num Procs

SOR: Speedup

MPIb
VOPP

Figure 5: VOPP and MPI with the same number of barriers
(SOR)

In Figure 5 the curve MPI b represents the MPI program
with unnecessary barriers. For SOR, we find the perfor-
mance gap is much smaller between VOPP and MPI if the
same number of barriers is added to the MPI program. For
32 processors, the speedup gap is reduced from about 6 to
2.

In Figure 6 the curve MPI b represents the MPI program
with unnecessary barriers, and the curve VOPP b represents
the VOPP program with less barriers (The execution results
for the VOPP program are wrong, of course). Both of them
have the same number of barriers. Under this situation, the
performance gap for Gauss becomes very small. For 32
processors, the speedup gap is reduced from 9 to less than
2.

From the above figures we can conclude that the over-
head of barriers is a significant overhead for VOPP pro-

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Num Procs

Gauss: Speedup

MPIb
VOPPb

Figure 6: VOPP and MPI with the same number of barriers
(Gauss)

grams. The programmer should first avoid unnecessary bar-
riers in programs. As system developers, we should re-
duce the overhead of barrier implementation to make bar-
riers more efficient.

3.2 Delayed data transmission

In the above producer-consumer example, data transmission
is delayed in the VOPP code due to the use of the lazy re-
lease consistency [8] for consistency maintenance of views.
To explain the situation, we use Figure 7 and Figure 8 to de-
scribe the difference in message transmission between MPI
and VOPP. We assume the processor

���
is the producer of

� , and
���

and
���

are the consumers of � .

consume(x)
P2

P1

P0

program order

produce(x) send(x)

recv(x)

recv(x)

consume(x)

Figure 7: Message transmission in MPI code

Figure 7 shows the message transmission in the MPI
code. While

� �
is producing � ,

���
and

���
are blocked by

recv waiting for � . Once � is received,
� �

and
� �

consume
it immediately.

Figure 8 shows the message transmission in the VOPP
code is more complex. While

���
is producing � ,

� �
and���

are waiting at barrier 1. After
� �

has produced � and

c: consume

P2

P1

P0
a_v(1) p(x) r_v(1)

a_v(1)

a_v(1)

c(x)r_v(1)

c(x) r_v(1)

program order

bar(1)

bar(1)

bar(1)

a_v: acquire_view
r_v: release_view

bar: barrier p: produce

Figure 8: Message transmission in VOPP code

reaches barrier 1, it sends messages to
� �

and
���

which
then carry on the execution. In ��� ��� ��
� � � ��� , a message is
sent to request the modifications of the view. When receiv-
ing the modifications,

� �
and

���
update the view (�) and

then consume � . From the figure, we know the consum-
ing of � is delayed compared with Figure 7. The delayed
time is one round-trip time (RTT) plus modification pro-
cessing time such as view updating. If the view is large, it
takes more time to process the modifications. Our NN ap-
plication suffers this delay very much since the views in the
application are large.

3.3 Consistency maintenance

Consistency maintenance is another extra overhead com-
pared with MPI. When a view is acquired, normally there
are 3 messages involved. The request message is first sent
to the view manager, which then forwards it to the view
holder. The view holder eventually sends reply to the view
requester. In MPI program, for the similar situation only
two messages are needed to serve the purpose. Consistency
maintenance also includes modification detection and view
updating. However, these overheads are minor compared
with barrier overhead and data transmission delay.

4 Conclusions and future work

The above experimental results demonstrate the perfor-
mance gap between VOPP and MPI. We have discussed the
three sources of overhead in VOPP contributing to the per-
formance gap: barriers, data transmission delay, and con-
sistency maintenance.

We are considering to reduce some of the overheads such
as barriers and data transmission delay. To reduce the over-
head of barriers, we need to investigate distributed algo-
rithms for efficient implementation of barriers. We are also
considering to replace barriers with some light-weight syn-
chronization primitives such as signaling.

To remove the data transmission delay, we may use the
eager release consistency [2], but there will be other over-
heads related to the eager release consistency. We will in-
vestigate the overheads of the eager release consistency for

consistency maintenance of views.
Our ultimate goal is to make shared memory parallel pro-

grams as efficient as message-passing parallel programs.

References

[1] Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu,
H., Rajamony, R., Yu, W., Zwaenepoel, W.: Tread-
Marks: Shared memory computing on networks of
workstations. IEEE Computer 29 (1996) 18–28

[2] Gharachorloo, K., Lenoski, D., and Laudon, J.: Mem-
ory consistency and event ordering in scalable shared
memory multiprocessors. In: Proc. of the 17th Annual
International Symposium on Computer Architecture
(1990) 15–26.

[3] Gropp, W., Lusk, E., Skjellum, A.: A high-
performance, portable implementation of the MPI
message passing interface standard. Parallel Comput-
ing 22 (1996) 789–828

[4] Huang, Z., Purvis M., and Werstein P.: View-Oriented
Parallel Programming and View-based Consistency.
In: Proc. of the Fifth International Conference on
Parallel and Distributed Computing, Applications and
Technologies (LNCS 3320) (2004) 505-518, Singa-
pore.

[5] Huang, Z., Purvis M., and Werstein P.: View Oriented
Update Protocol with Integrated Diff for View-based
Consistency. In: Proc. of the IEEE/ACM Symposium
on Cluster Computing and Grid 2005 (CCGrid05),
IEEE Computer Society (2005)

[6] Huang, Z., Purvis M., and Werstein P.: Performance
Evaluation of View-Oriented Parallel Programming.
In: Proc. of the 2005 International Conference on Par-
allel Processing (ICPP05), IEEE Computer Society
(2005)

[7] Huang, Z., Sun, C., Cranefield, S., Purvis,
M.: A View-based Consistency model based on
transparent data selection in distributed shared
memory. Technical Report (OUCS-2004-03) Dept
of Computer Science, Univ. of Otago, (2004)
(http://www.cs.otago.ac.nz/research/techreports.html)

[8] Keleher, P.: Lazy Release Consistency for distributed
shared memory. Ph.D. Thesis (Rice Univ) (1995)

[9] Lamport, L.: How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers 28 (1979) 690–691

[10] Werstein, P., Pethick, M., Huang, Z.: A Performance
Comparison of DSM, PVM, and MPI. In: Proc. of the
Fourth International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies
(PDCAT03), IEEE Press, (2003) 476–482

