Load Balancing in a Cluster Computer

Paul Werstein, Hailing Situ and Zhiyi Huang

Department of Computer Science
University of Otago
Dunedin, New Zealand
werstein, hsitu, hzy @cs.otago.ac.nz

Abstract

This paper proposes a load balancing algorithm for dis-
tributed use of a cluster computer. It uses load informa-
tion including CPU queue length, CPU utilisation, memory
utilisation and network traffic to decide the load of each
node. This algorithm is compared to an algorithm using
only the CPU queue length. The performance evaluation
results show that the proposed algorithm performs well.

1 Introduction

A cluster computer is a collection of computers intercon-
nected via some network technology. The individual com-
puters can be PCs or workstations. Ideally, a cluster works
as an integrated computing resource and has a single sys-
tem image spanning all its nodes. Hence, the users see only
a single system. User processes can be executed on any
node of the cluster.

A cluster can be used for scientific applications that need
supercomputing power and in domains such as databases,
web service and multimedia, which have diverse Quality-
of-Service (QoS) demands. In addition, users can access
any node within the cluster and run different types of appli-
cations simultaneously. The main goals are to minimise the
total response time and maximize throughput.

Load balancing tries to balance the total cluster system
load by transferring or starting processes on the more lightly
loaded nodes in preference to heavily loaded nodes. Doing
so attempts to ensure good overall performance.

The control of a cluster can be centralized and dis-
tributed.

e In a centralized cluster, all users interact with the clus-
ter through a central node. The other nodes are pro-
cessing nodes. User processes are allocated to process-
ing nodes by the central node. The central node col-

0-7695-2736-1/06 $20.00 © 2006 IEEE

569

lects system state information and makes all schedul-
ing decisions.

e In a distributed cluster, a user can connect directly to
any one of the cluster nodes. There is no master node.
Each node is considered a local controller. They run
asynchronously and concurrently to each other. Each
node is responsible for making scheduling decisions
for the processes submitted by its users and for accept-
ing remote processes.

A variety of application types can be run on a cluster. Ex-
amples include CPU-bound, I/O-bound and memory-bound
applications. The different uses of a cluster have different
load balancing requirements.

In this research, a load balancing algorithm is developed
and its performance is evaluated. The algorithm is based
on a distributed cluster where each node makes its own
scheduling decisions. A mix of applications is used, includ-
ing CPU-bound, network-bound, and memory-bound appli-
cations.

The performance of the proposed load balancing algo-
rithm is compared to the typical CPU queue length tech-
nique used in many other algorithms. The performance tests
show the proposed algorithm gives much better throughput.

The rest of the paper is organized as follows. Section 2
presents the current state of load balancing research. A de-
tailed description of the proposed algorithm is presented in
Section 3. Section 4 discusses the implementation issues.
The experiments and analysis are shown in Section 5. Sec-
tion 6 gives conclusions and suggestions for future work.

2 Related Work

Load balancing algorithms generally can be classified as
either static or dynamic. Static algorithms only use given
process and node information in making load balancing de-
cisions. They do not adapt to fluctuations of workload. Un-
der a situation where the system workload is statically bal-

anced, some computers may be heavily loaded while others
are idle or lightly loaded.

Dynamic load balancing attempts to balance the work-
load dynamically by responding to the current system state.
It should be able to improve cluster performance. However
dynamic algorithms are usually more complex than static
algorithms. They collect information on the current clus-
ter state and make decisions on process allocation based on
that information. They are more suited to heterogeneous
applications. Dynamic load balancing algorithms are based
on:

e Joad estimation policies
e information exchange policies

e process transfer policies

e selection policies

e location policies

Each of these policies is discussed below.

Load information serves as one of the most fundamental
elements in the load balancing process. Every dynamic load
balancing algorithm is based on some type of load informa-
tion. In order to balance the workload among nodes, a key
issue is the measurement of workload on the nodes. Many
types of load information have been explicitly or implic-
itly used to express the load existing on a node at a given
time. Examples include CPU utilisation [6], the length of
the CPU queue [4], resource queue length [2] and a method
with prediction of process requirements [1].

Once the load information has been collected and anal-
ysed according to the load estimation policy, these data
must be exchanged among the nodes of the cluster. Infor-
mation exchange policies include:

e Periodic policies — In a periodic policy, all nodes
broadcast their state information at certain time inter-
vals. Either a central node or all other nodes receive
and store these data. It is simple and requires no over-
head to check the current state.

Demand-driven policies — Under these policies, a
node collects the state of other nodes only when it be-
comes overloaded or underloaded.

State-change-driven policies — Under these policies
such as [3], nodes disseminate information about their
state whenever their state changes by a certain amount.

After the load data are exchanged, a central node or
each node may have the load information for some or all
nodes. Using these data, a process transfer policy can de-
cide whether a node is lightly or heavily loaded. Most ex-
isting process transfer policies are based on various types

570

of thresholds. Different load balancing algorithms use dif-
ferent load information to define the threshold values. Pro-
cess transfer policies can be based on predefined or dynam-
ically changing single-threshold or a double-threshold val-
ues. The process transfer policy determines the load on a
node and decides whether to transfer a process.

A selection policy decides which process is selected for
transfer. The chosen process could be a new process which
has not started or an old process which is already running,
Transferring a running process is complicated and not com-
monly done.

The next step is to select the destination node which is
done under a location policy. The node selected should be
lightly loaded and have the correct environment to run the
process. Shirazi et al. [5] summarized two general policies:

e Minimum load — select a node with the minimum cur-
rent load.

Low load — select the first node whose load is below
some threshold value. This policy is applied to a trans-
fer policy based on thresholds. There is a possible
problem of several heavily loaded nodes transferring
their processes to an lightly loaded node, causing it to
become heavily loaded. A simple solution is to ran-
domly select one of the lightly loaded nodes for trans-
fer.

Although many policies exist, the policies should be de-
cided according to the desired environment, such as appli-
cation types or cluster environment. It is very difficult to
say which algorithms are most efficient. There is no single
algorithm which is optimal for all purposes. We can only
find a best solution for a particular situation.

In most clusters, processes will arrive randomly, and it
is difficult to know their characteristics such as execution
time. We can only take into account the current states of the
nodes such as CPU utilisation and CPU queue length.

3 Algorithm Description
3.1 Introduction

The goal of this research is to design an effective load
balancing algorithm for a cluster computer. A homoge-
neous environment is assumed. The individual computers
are PCs having a single CPU and their own memory. They
are interconnected through switched Ethernet. Each node
runs the Linux operating system. The file system is shared
through NFS. Users can directly log into any node in the
cluster.

The cluster provides network services. User can re-
motely access web servers, database servers, network print-
ers and also other cluster nodes. Each computer uses the

NES file server. Therefore network traffic is an important
factor in the cluster.

The applications of the cluster are typical Linux appli-
cations: the processes can be CPU-bound, network-bound
or memory-bound. The type of a new process is unknown.
The use of cluster is totally distributed.

The algorithm is decentralized to avoid bottlenecks and a
single point of failure. It considers CPU queue length, CPU
utilisation, network traffic, and memory usage. These data
are exchanged periodically between the cluster nodes. Each
node makes its own decisions.

3.2 Load estimation and information ex-
change policy

Ideally, the load information should reflect the current
CPU utilisation, memory utilisation and network traffic of
a node. Traditionally, the load of a node at given time was
described simply by CPU queue length.

CPU queue length refers to the number of processes
which are either executing or waiting to be executed. The
processes which are waiting for other system resources are
not included. So the CPU queue length does not reflect di-
rectly network traffic and memory utilisation. In the pro-
posed algorithm, CPU utilisation, CPU queue length, net-
work traffic and memory utilisation are used.

The system statistics such as CPU utilisation, CPU queue
length and the network traffic of a node changes during the
life of processes. For example, the CPU utilisation may be
high in one second but low in the next second. Therefore
it is reasonable to average these statistics over several sec-
onds.

In the proposed algorithm, 5 seconds is set for the
averaging interval. CPU utilisation (cpu-u), CPU queue
_length (nr), memory utilisation (mem_u) and network traf-
fic (net_u) are considered as load information parameters to
measure load of a node. The following equation is used to
calculate each metric.

+pa+-+
ln(par) — D1 D2 - pt’ (1)

where

e [, is the average load metric of the specified parameter
over the previous ¢ seconds for a particular node.

e par is the information parameter of load. (par is either
nr, cpu_u, mem-u or net_u).

e p; - -y is the value of a given parameter in a previous
one second interval.

e t is the number of time intervals. ¢ is set to 5 for this
research.

571

e 1 is the number of a given node.

The averaged information including CPU utilisation,
CPU queue length, memory utilisation and network traffic
are the load metrics used to describe the load on a node.

The information exchange policy chosen for this re-
search is a periodic policy with a time interval of one sec-
ond.

3.3 Process transfer policy

In the proposed algorithm, this determination includes
two steps. First the nodes are classified according to their
loading metrics. Then a decision is made whether to start a
process on another node.

3.3.1 Load classification

The first step in the process transfer determination is to clas-
sify the load at each of the nodes. The proposed algorithm
uses four levels of load: idle, low, normal and high.

The first part of this step involves calculating two thresh-
old values for the CPU queue length (nr), CPU utilisa-
tion (cpu-u) and network traffic (net_u). Two thresholds are
used because they give a more stable load balancing solu-
tion. That is nodes are less likely to constantly switch be-
tween highly loaded and lightly loaded.

The calculation of the threshold for these three parame-
ters is done as follow:

1. Calculate load average of each parameter (nr, cpu._u,
and net_u) over all nodes. The equation is:

htl+ -+l
Lavg(par) = =——— @

where

e L4 is the average load of a given parameter
over all nodes.

e par is the parameter of load: nr, cpu_u, and net_u.

e [y,--,l, are the current load of the parameter of
each node derived by load estimation policy.

e n is the number of nodes.

Each of the [; is the five second average of the desired
parameter. See Equation 1.

2. Calculate the threshold values

The upper and lower threshold values of CPU queue
length, CPU utilisation and network traffic are calcu-
lated by multiplying the average load of each parame-
ter and a constant value.

ty ZH*Lavg

tr=1L *Lavg

where t g7 is the high threshold, ¢, is the low threshold,
H and L are constants. H is greater than one and L is
less than one. In the proposed algorithm, H and L are
set to 1.3 and 0.7, respectively. That means when a
certain load parameter is 30% above the average load,
it is highly loaded. When a certain load parameter is
70% of the average load, it is lowly loaded; otherwise,
it is normally loaded. Note that these classifications
are for individual parameters, not for the nodes.

This calculation and classification of parameters is
done for the CPU queue length, CPU utilisation and
network traffic. For memory utilisation, the proposed
algorithm simply uses the actual five second average.
No threshold is applied to it.

The second part of load classification is to group the
nodes into one of four classes. Using the threshold values
of each parameter, the nodes will be grouped as idle, low,
normal or high according to the following criteria. For each
node, the CPU utilisation, CPU queue length, memory utili-
sation and network traffic will be checked to decide whether
it is in idle, high, low or normal level.

idle cpuu < 1%
high (mem_u > 85%) or (cpu.u is high and
net_u is high) or (nr is high)
load = . .
low (cpu_u is low and net_u is low) or
(nr is low)
normal otherwise

e Idle — As noted earlier, using only the CPU queue
length is not enough to determine whether a node is
idle. We use CPU utilisation to determine idle nodes.
In a modern network system, there are some back-
ground programs running such as daemons or moni-
toring programs. Most of background programs run
periodically for a very short period of time. We set the
CPU utilisation to 1% to ignore these background pro-
grams. When the CPU utilisation of a node is less and
equal than 1%, the node is considered as an idle node.

High —If any of these three conditions is true, the node
will be classified in the high state.

— Memory utilisation is greater than 85%. This is
a characteristic of an individual node, not a clus-
ter average. The proposed algorithm considers

572

any node with less than 15% available memory
at risk of being forced into memory paging. Such
paging will dramatically slow down processing at
that node.

Cpu_u is high and net_u is high. If both the CPU
utilisation is high and the network traffic is high,
the node is classified in the high state.

Nr is high. If the number of processes in the CPU
queue is high, the node is classified in the high
state.

e Low —If either of these two conditions is true, the node
will be classified in the low state.

— Cpu.u is low and net_u is low. If both the CPU
utilisation is low and the network traffic is low,
the node is classified in the low state.

— Nr is low. If the number of processes in the CPU
queue is low, the node is classified in the low
state.

e Normal — Nodes that are not classified into one of the
other categories are the nodes in the normal load state.
They are considered as more loaded than the low state
and less loaded than the high state.

3.3.2 Transfer decision

After the load of each node has been classified, the next step
of the process transfer policy is to decide if a newly arriving
process should be run locally or on some other node. The
following pseudocode defines how this decision is made.

IF the local host
run locally
ELSE IF there are

run on an idle
ELSE IF the local host is high loaded AND
there are low loaded nodes THEN
run on a low loaded node
ELSE
run locally
ENDIF

is idle THEN

idle nodes THEN
node

This pseudocode gives preference to running a process
locally if the local node is idle. The next choice is any other
idle node. The next choice is a node with a low load level
if the local node is highly loaded. If no node can be found
in the previous choices, the process is assigned to the local
host.

F -

3.4 Selection policy

The proposed algorithm does not attempt to determine
the resource requirements of a newly arrived process. In
addition, the proposed algorithm is nonpreemptive. That is,
running processes are not moved.

3.5 Location policy

When a process has been selected for transfer, the loca-
tion policy determines the node to which the process should
be transferred. For the cluster used in this research, the ar-
rival of new processes is not centrally controlled and can oc-
cur at any time. In addition, there is no communication be-
tween nodes when they start new processes locally or start
new processes on other nodes. The only communication
for the load balancing algorithm is the periodic exchange of
load data.

Since all nodes are grouped by the same algorithm, it
is possible under worst case conditions for the same target
node to be picked by several nodes at the same time. To
help avoid this possibility, the proposed algorithm randomly
picks a target node from the group of possible targets.

4 TImplementation
4.1 Load balancing system architecture

Figure 1 shows the architecture of the load balancing
system. LocaBUS [7] provides a very efficient kernel to
kernel message passing system for cluster computers. It
provides a reliable broadcast function based on Ethernet’s
broadcast capabilities. LocaBUS reduces the overhead of
information collection as compared to using TCP/IP.

LocaMonitor is a distributed cluster monitoring protocol
based on LocaBUS. It is implemented as a kernel module
and uses locaBUS as the message passing.system. It per-
forms the following six tasks:

e Load information collection — Every second, Loca-
Monitor on each node gathers CPU utilisation, CPU
queue length, memory utilisation and the network traf-
fic from the kernel data structures and broadcasts the
data clusterwide.

e Calculates a running five second average of the broad-
cast data received.

e Averages each parameter for all cluster nodes.

e Calculates the dynamic threshold values for CPU util-
isation, CPU queue length and network traffic.

e Classifies nodes into different load levels.

Command

1

Startemd

| Process execution decision
>

/proc/load_list

Modified LocaMonitor Load level decision

\

LocaBUS

T

Linux Kernel

Figure 1. Load balancing system

e Reports the results to /proc/load_list.

When a user enters a command to start a new process,
the command is intercepted by Startcmd as shown in Fig-
ure 1. Startcmd is implemented in user space. Its task is
to determine which node should run the new process and
then to start the process on that node.

5 Experiment

The proposed load balancing algorithm is based on CPU
utilisation, CPU queue length, memory utilisation, and net-
work traffic. It is compared to the traditional CPU queue
length based policy. This allows a comparison between the
two load estimation policies.

The performance tests use a variety of different types of
applications: CPU bound, network bound, memory bound,
and mixed applications.

All nodes in the cluster are homogeneous and have the
same hardware and operating system. The network is
switched 100 Mbps Ethernet. The filesystem is NFS with
the disks on nodeQ1.

The comparisons are based on three aspects:

e Explore which policy is better at finding idle nodes.

e Explore the results of the two policies for certain types
of applications.

e Explore the results of the two policies for mixed types
of applications.

The experiments are done based on a variety of applica-
tions. These applications are meant to simulate what might

occur in a cluster that is used by a computer science labo-
ratory, for example. The tests are not meant for simulating
paralle] programming applications.

These applications include:

e CPU-bound process _ This program computes
sin (x) recursively. When run, the CPU utilisation
is about 100%.

e Network-bound process — In the cluster, home directo-
ries are located on a NFS file server. The main network
traffic is that generated by file operations. We devel-
oped a program that has low CPU utilisation and high
network traffic. It reads a large file using the fread ()
function in the C library. In this program, the buffer
is set to a large size. When reading the large file, it
will cause high network traffic but moderate CPU use
because the CPU has to wait on the transfer of data
over the network. The average CPU utilisation is about
50%. The file transfer rate is about 10,000 Kbps.

We also created a script that copies two large files at
the same time from one node to another node. The
Linux cp command is used. The average CPU utili-
sation is about 10%, and the network transfer is about
2000 Kbps.

e Memory-bound process — The programs for simulating
a memory-bound process uses the malloc () func-
tion to allocate 200 Mbytes or 300 Mbytes of memory.
Then the processes gradually load the memory. Since
the nodes only have 192 Mbytes of physical memory,
the memory is exhausted, and virtual memory software
has to move pages to swap space on a local disk.

e Mixed processes — One program recursively reads a
small file every second. This simulates a process with
low CPU utilisation and low network traffic. The aver-
age CPU utilisation is about 3%, and the average net-
work traffic is about 300 Kbps.

Another program simulates a program with high CPU
utilisation and low network traffic. It reads a large file
using fread (), but the buffer is set to a small size.
The average CPU utilisation is about 100%, and the
network traffic is about 300 Kbps.

The terms low and high with respect to utilisation are
relative. That is, there is no absolute value that is considered
low or high. Thus a CPU utilisation of 50% is higher than
10% but lower than 90%.

The tests consist of two parts:

e Workload — The workload of the tests includes a batch
of programs which simulates a user’s work. These pro-
grams are chosen from the above pool of programs as

574

needed. The programs are randomly chosen each time.
Between two programs, there is a random several sec-
onds sleep time to simulate a user’s thinking time,

e Background programs — A series of background pro-
grams are used to simulate different loadings of the
nodes, such as some nodes with low CPU utilisation
and low network traffic, some nodes with low CPU
utilisation and high network traffic, some nodes with
high CPU utilisation, and some nodes with high mem-
ory utilisation.

The background programs and random workload pro-
cesses can make a node’s loading random. In this situ-
ation, the proposed load balancing algorithm can make
each process in the workload choose the proper node
from the different loadings of the nodes.

5.1 Detection of idle nodes

As previously discussed, CPU queue length might not re-
flect correctly whether a node is idle. For some processes, a
node may have a low CPU utilisation but have high network
traffic or high memory utilisation. For these kinds of pro-
cesses, the process is normally not on the CPU queue when
collecting information every second. The CPU queue length
based load estimation policy will determine the nodes run-
ning these kinds of processes as idle nodes, although the
node has high network traffic or high memory utilisation.

In addition, the type of each new process is unknown.
Ideally if there are idle nodes, the new process should run
on an idle node. If an idle node cannot be detected cor-
rectly, the performance will be degraded. For example, if a
new process needs high memory size, and a node with high
memory utilisation but zero CPU queue length is chosen as
an idle node, the performance will be greatly reduced.

The methodology used by the proposed algorithm is to
run a workload on the nodes one by one. These nodes have
different loading characteristics. The purpose of this test is
to see whether an incoming process can be allocated to an
idle node correctly. The run time of the workload will be
measured and used as the measurement of performance.

e Background programs — The background programs in-
clude three types of processes. They make nodes have
low CPU utilisation and different network traffic and
memory utilisation, but the CPU queue lengths are all
zero. The loading of these nodes are:

— Node27 is left idle. On this node, CPU utilisation
is zero and CPU queue length is zero.

— Node28 runs a program making it have low CPU
utilisation, low network traffic, and a CPU queue
length of zero.

Table 1. Run time for detection of idle nodes
experiment

Model node27 | node28 | node31 | node33
Proposed 70.24 70.79 74.47 71.24
Queue-length

based 70.65 7433 | 418.09 | 79.14

— Node31 runs a program making it have high
memory utilisation and forcing memory paging
to the hard disk. The CPU utilisation is low and
CPU queue length is zero.

- Node33 runs a program making it have low CPU
utilisation, high network traffic, and CPU queue
length is zero.

Thus there is a group of four machines with different
loading characteristics. However each node has a zero
length CPU queue.

e Workload — A 20-program workload is randomly cho-
sen from the pool of workload processes with different
random seeds. The programs include different types of
applications.

The 20-program workload is run on each of the nodes,
one at a time. In other words, the 20-program workload is
run on node27, leaving it to choose a target node accord-
ing to the load balancing algorithm. Then the 20-program
workload is run on node28, and so on.

The results are shown in Table 1. The result is the aver-
age run time of the workload being presented to each of the
nodes.

For the proposed load balancing algorithm, different
nodes may be chosen as target nodes for each new pro-
cess. In fact, for this algorithm, node27 is the only “idle”
node, and it is always chosen. When using node28, there
is a small overhead associated with remotely starting the
new processes on node27. When using node31, there is a
slightly larger overhead waiting on the virtual memory sys-
tem to allocate pages so the new processes can be remotely
started on node27. For node33, there is a bit of waiting for
the new processes to be remotely started on node27 over a
busy network.

On the other hand, the CPU queue length based model
always chooses the local node to run since the CPU queue
length is zero. When using this model, node27 is truly idle
and gives the best overall time. Node28 is lightly loaded
and takes a longer time due to its background processes.
Node31 takes a very long time because the virtual mem-
ory system is forced into paging to continue running the

575

background processes and the new process. Node33 has
some CPU overhead associated with network processing
and takes longer than a truly idle node.

Thus the proposed load balancing algorithm performs
better than a CPU queue length based algorithm in detecting
truly idle nodes.

5.2 Different types of processes: CPU-
Bound, Network-Bound and Memory-
Bound

In this section, we assume the types of new processes
are known. They are CPU-bound, network-bound, and
memory-bound. The test is to explore the effect of the load
estimation policy on different types of applications. We will
compare the performance of the proposed model and the
CPU queue-length based model.

The methodology is to run a similar set of programs
on various nodes with different loading characteristics and
compare the performance of the two load balancing algo-
rithms.

e Background processes — The background processes are
similar to the previous test. The difference is the addi-
tion of node29. The characteristics of the nodes are:

— Node27 is left idle.

— Node28 runs a program making it have low CPU
utilisation and low network traffic.

— Node29 runs a program making it have high CPU
utilisation and low network traffic.

— Node31 runs a program making it have high
memory utilisation and forcing memory paging
to the hard disk.

— Node33 runs a program making it have low CPU
utilisation and high network traffic.

e Workload - There are three groups of workloads:

— CPU-bound workload — This workload consists
of 10 arithmetic computing processes.

— Network-bound workload — This workload con-
sists of 10 processes using NFS to generate a high
amount of network traffic.

— Memory-bound workload — This workload con-
sists of 10 processes which need a large amount
of memory.

Each workload group runs its ten programs one at a time.
This means that one process is started. The node waits for
that process to complete, either locally or remotely. Then
it starts the next process after a random wait. This cycle
continues until all ten programs are run.

Table 2. Average run time for the test about
different types of applications

Model CPU- | Network- | Memory-
bound bound bound

Proposed 25.52 61.63 235.58

Queue-length based | 23.05 96.09 499.71

Precent change

between models -10.7 35.9 32.9

Each of the three groups of workloads are run separately.
For each group (CPU, network, or memory bound), the tests
are started approximately one second apart on all 5 nodes.
After the start, there is no coordination between nodes in
starting the remaining nine processes since there is a ran-
dom wait between each new process on a given node.

Each of the tests are run twice and the average run time
of each test is calculated and taken as the result. The three
tests are:

e Test 1- Run a series of CPU-bound processes on all
nodes at the same time.

e Test 2 — Run a series of Network-bound processes on
all nodes at the same time.

e Test 3 — Run a series of memory-bound processes on
all nodes at the same time.

The results are shown in the Table 2. It gives the average
run times and the percentage change between the two load
estimation policies. The results show that:

e When the incoming workload contains only CPU-
bound processes, the performance of the proposed
model is about 10.7% worse than the CPU queue-
length based model. The reason for this is that CPU-
bound processes mainly consume CPU time. The best
node should be the node with the lowest CPU utili-
sation regardless of whether there is a high network
traffic or high memory utilisation. The CPU queue-
length based algorithm fits this workload type easily.
That is, it will treat all nodes with low CPU utilisa-
tion and zero CPU queue length as idle nodes. While
the proposed model tries to choose the node with low
CPU utilisation and low network traffic. In addition,
the node with a high memory utilisation is considered
a highly loaded node. Thus the number of selectable
nodes is lower and more processes have to run locally.

e When the workload is only a network-bound workload,
the performance of the proposed algorithm is about

576

35.9% better than CPU queue-length based algorithm.
That is because the proposed model will first choose
the nodes with low CPU utilisation and low network
traffic, while the CPU queue-length based model might
choose a node with high memory utilisation or high
network traffic. The network will become bottleneck
if a network-bound process runs on a node with high
network traffic. The performance will be reduced.

e When the workload includes all memory-bound pro-
cesses, the performance of the proposed algorithm is
about 52.9% better than the CPU queue-length based
algorithm. The reason is that the CPU queue-length
model will decide a node with zero CPU queue length
but high memory utilisation as an idle node.

When the physical memory of a node is exhausted, it
needs to page. In this situation, a new memory-bound
process running on this node makes the performance
significantly worse.

We can conclude that if all applications of the cluster are
CPU-bound processes, CPU queue-length based model may
be a good choice. Otherwise the proposed algorithm shows
superior performance. In general, a real cluster may have
network traffic and some nodes may be using a significant
amount of memory. Therefore network traffic and memory
utilisation are worth considering in a load balancing algo-
rithm.

5.3 Mixed types of applications

In this section, we explore the effect of the load estima-
tion policy on mixed types of applications. We will com-
pare the performance of the proposed algorithm and the
CPU queue-length based algorithm with a mix of applica-
tion types. The applications include arithmetic computing,
programs using network filesystem, and programs using a
large amount of memory.

The methodology is the same as Section 5.2. The dif-
ference is that the workload on each node is mixed. The
workload consists of 10 programs. Each program in the
workload is randomly selected from the pool of programs.
Thus we do not know the type of each new process a priori.
The type of program is decided at run time. The workload
runs on the nodes which have the same loading character-
istics as in Section 5.2. Each test is run four times with a
different random seed each time.

The result is shown in Table 3. Each node has two val-
ues, proposed algorithm and CPU queue-length based al-
gorithm. They are the average of four runs. The Total
time row is the total run time of the five nodes above. The
Diff time row is the maximum difference between the
quickest and slowest nodes.

Table 3. The test about mixed applications

Items Proposed model | Queue-length
based model
node27 922.9 878.37
node28 1120.43 1048.77
node29 1553.09 3129.31
node31 1387.26 4391.13
node33 1626.52 2258.53
Total time 6610.2 11706.11
Diff time 703.62 3512.76

The cluster performance with the different algorithms
can be shown by the total run time of all programs on all
cluster nodes. The maximum differential of the run time of
each node can indicate the balance of the load on each node.

According to the tests, the result shows that the overall
performance of the proposed algorithm is about 43.5% bet-
ter than the CPU queue-length based algorithm. The max-
imum differential of the run time of proposed algorithm is
far better than the CPU queue-length based algorithm. This
indicates the proposed algorithm more effectively uses the
cluster than the CPU queue-length based algorithm. Only
when all three of CPU utilisation, network traffic and mem-
ory utilisation are low is the CPU queue-length algorithm
better. When there is a reasonable amount of network traf-
fic and/or memory utilisation, the proposed algorithm has
better performance.

6 Conclusion

This research has developed an efficient load balancing
system. For this system, we developed a new way to calcu-
late the load of cluster nodes. It uses CPU utilisation, CPU
queue length, network traffic, and memory utilisation to de-
termine the load of each node instead of traditional CPU
queue length.

A number of tests were performed. From these tests, we
can conclude:

e Effectively using the idle nodes in the cluster is impor-
tant. To determine the idle nodes, CPU utilisation is
usually better than CPU queue length. CPU utilisation
can reflect a node with low CPU use.

For a cluster environment, if the main applications
include the CPU-bound process, network-bound and
memory-bound process, and the new processes are un-
known, the load balancing system based on CPU queue
length, CPU utilisation, network traffic, and memory
utilisation performs better than CPU queue length.

577

e For a cluster which is mainly used by CPU-bound pro-
cesses such as science computing, the load balancing
system based on CPU queue length performs better.
Otherwise the proposed load balancing system per-
forms better.

e When deciding a transfer process, it is efficient to let
highly loaded nodes transfer their processes to other
lightly loaded nodes. This allows highly loaded nodes
to have more chances to remove their local load.

References

[1] M. V. Devarakonda and R. K. Iyer. Predictability of pro-
cesss resource usage: A measurement-based study on UNIX.
IEEE Transactions on Software Engineering, 15(12):1579—
1586, 1989.

D. Ferrari and S. Zhou. An empirical investigation of load
indices for load balancing applications. In B. A. Shirazi,
A. R. Hurson, and K. M. Kavi, editors, Scheduling and Load
Balancing in Parallel and Distributed Systems, pages 487—
496. IEEE Computer Society Press, Los Alamitos, California,
1995.

O. Kremien, J. Kramer, and J. Magee. Scalable, adaptive
load sharing for distributed systems. IEEE Parallel and Dis-
tributed Technology, Systems and Applications, 1(3):62-70,
1993.

T. Kunz. The influence of different workload descriptions
on a heuristic load balancing scheme. IEEE Transactions on
Software Engineering, 17(7):725-730, 1991.

B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and
Load Balancing in Parallel and Distributed Systems. IEEE
Computer Society Press, Los Alamitos, California, 1995.

A. S. Tanenbaum. Distributed Operating Systems. Prentice-
Hall, Englewood Cliffs, New Jersey, 1995.

P. Werstein, M. Pethick, and Z. Huang. Locabus: A kernel
to kernel communication channel for cluster computing. In
Proceedings of the Fifth International Conference on Parallel
and Distributed Computing, Applications and Technologies,
pages 497-504, Singapore, 2004.

[2]

[3]

[4]

(5]

(6]
[7]

