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Abstract
This paper proposes a data race prevention scheme, which can
prevent data races in the View-Oriented Parallel Programming
(VOPP) model. VOPP is a novel shared-memory data-centric
parallel programming model, which uses views to bundle mu-
tual exclusion with data access. We have implemented the data
race prevention scheme with a memory protection mechanism.
Experimental results show that the extra overhead of mem-
ory protection is trivial in our applications. We also present
a new VOPP implementation–Maotai 2.0, which has advanced
features such as deadlock avoidance, producer/consumer view
and system queues, in addition to the data race prevention
scheme. The performance of Maotai 2.0 is evaluated and com-
pared with modern programming models such as OpenMP and
Cilk.

1 Introduction
Multicore and chip-multithreading (CMT) technologies are
now becoming mainstream. These technologies allow multi-
ple processors packed into a chip in a single computer, which
often provides shared memory and cache [28]. However, par-
allel programming with shared memory can be prone to errors
such as data race, which are difficult to debug due to their non-
determinism and thus can severely affect programmability.

In a parallel multithreaded computation, a data race occurs
if concurrent threads access the same memory location with-
out mutual exclusive primitives such as locks, and at least one
of the threads writes to the location. There have been many
studies on debugging data races. Some perform a post-mortem
analysis based on program execution traces [8, 11, 13, 21, 22],
while others perform on-the-fly analysis during program exe-
cution [2, 10, 20, 27]. Among modern shared-memory parallel
programming models [9, 23, 24, 26], only Cilk++ [9] provides
a data race detector called Cilkscreen [2, 9, 16].

Even though race detectors can help debug some data races,
they often have the following problems.

• Race detectors are often expensive to run, both in
terms of computation and memory space. For example,
Cilkscreen can take up to 30 times the normal execution
time of the debugged program to run, and the memory
footprint can be “several times” the memory footprint of
the original application[9].

• Race detectors can only detect data races for one given
input of a program. If data races do not occur when the
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program is run with a given input, this does not imply the
program is data race free. The reason is that a different
input may result in threads being executed in different
order, and the resultant interaction may cause data races.

• To a novice programmer, race detectors can be difficult
to use. For example, Cilkscreen gives a detailed trace of
memory addresses and their associated function names
and line numbers, which can be very scary and confusing
to inexperienced programmers. In addition, this trace is
of little help to programmers about the dynamic nature of
the data races, e.g. when and how the data races happen.

In this paper, instead of data race detection, we propose a
data race prevention scheme, which can prevent data races from
occurring in the first place. This scheme is implemented in our
View-Oriented Parallel Programming (VOPP) model [14, 37].
In VOPP, shared data is partitioned into views. A view is a set
of memory units (bytes or pages) in shared memory. Each view,
with a unique identifier, can be created, merged, or destroyed
at any time in a program. Before a view is accessed (read or
written), it must be acquired (e.g. with Vpp acquire view);
after the access of a view, it must be released (e.g. with
Vpp release view). The most important property for views is
that they do not intersect with each other (refer to [14, 37] for
details).

VOPP is a data-centric programming model [3, 7, 33], which
bundles mutual exclusion and data access together. It has the
following advantages: First, programmers can be relieved from
data race issues. In VOPP, when a view is acquired, mutual
exclusion is automatically achieved, so it is not possible for
other processes to access the view at the same time. If a view
is accessed without being acquired, either the programmer can
be notified of the problem by the compiler with some VOPP
related support, or the run-time system can report the prob-
lem with the support of the underlying virtual memory sys-
tem. Second, debugging is more effective. In VOPP, views are
the only shared data between processes. Since views can be
tracked with view primitives, they can be easily monitored by
a debugger while a program is running. Third, since the mem-
ory space of a view can be known, view access can be made
more efficient with cache prefetching techniques such as helper
threads [15, 17, 19, 37].

This paper has the following contributions. First, we have
proposed and implemented a data race prevention scheme for
VOPP based on a virtual memory system. Second, we have
proved the efficiency of the scheme with performance evalu-
ation against other parallel programming models. Third, we
have implemented a shared-memory parallel programming sys-
tem: Maotai 2.0, which has enhanced VOPP with advanced
features such as deadlock avoidance and producer/consumer
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view. Maotai 2.0 is based on Maotai 1.0 [37], but is enhanced
with features such as data race prevention.

The rest of this paper is organized as follows. Section 2
describes a data race prevention scheme that can eliminate
data races in VOPP. In Section 3, we introduce the advanced
features of Maotai 2.0 for improving programmability and per-
formance. Section 4 discusses the programmability of VOPP
and Section 5 presents the performance evaluation of Maotai
2.0. Finally, our future work is suggested in Section 6.

2 Data Race Prevention
Scheme in VOPP

2.1 Basic Concepts in VOPP
In VOPP, shared data is defined through views. Unlike most
shared memory parallel programming models, variables are pri-
vate to a process by default in VOPP. Shared objects must be
explicitly defined as “views”.

Views can be created, destroyed, merged, or resized, but a
process must acquire a view (read-only or read-write) before
accessing it and must release it after finishing with the view.
VOPP adopts the Single-Writer Multiple-Reader (SWMR)
model. At any given time, a view can either be read/written by
one process or allow read-only access to multiple processes. In
our current implementation, a view uses a contiguous memory
space to store shared variables. Below is a simple example of
VOPP in C.

typedef struct {int a[ARRAY_SIZE];

int result;} Foo;

Foo *ptr;

if (0 == Vpp_proc_id) {

/* master allocates view 0 with

type SWV, which is a shared object

with "Foo" type */

Vpp_alloc_view(0, sizeof(Foo), SWV);

}

Vpp_barrier();

ptr = Vpp_acquire_view(0);

ptr->result += compute(ptr->a);

Vpp_release_view(0);

As illustrated in the above example, if a data structure
should be shared by multiple processes, a view has to be created
for it with Vpp alloc view. For exclusive access to the view, the
view type is SWV, which means “Single Writer View”. How-
ever, we also provide other advanced views in Maotai 2.0 to
enhance the programmability and flexibility of VOPP (refer to
Section 3).

If a process wants access to a view, the view must be ac-
quired with Vpp acquire view (or Vpp acquire Rview for read-
only access). The view must be released with Vpp release view
after accessing it.

2.2 Data Race Prevention and Detec-
tion

In our data race prevention scheme, data races are prevented
by a memory protection mechanism available in most UNIX
systems. All views are initially protected from access using
system calls such as mprotect(). mprotect() can deny access to
a page, allows read-only access to a page, or allows read/write
access to a page. We use this mechanism to prevent a view

from illegal accesses. Only after a view is acquired is a process
allowed to access the memory pages of the view via mprotect().
When a view is released, the process is again denied access to
the view.

If a process accesses a view before Vpp acquire view or af-
ter Vpp release view, the pages of the view would not have
the necessary access permission and thus a segmentation fault
will occur. Our system will handle the fault, send a warning
message to the programmer that a view is accessed without
acquisition, and quit the program execution.

In this way, a view can either be written to by one pro-
cess or read by multiple processes at a time. Programmers
do not need to worry about the data race bugs. If a view is
accessed by calling Vpp acquire view, mutual exclusion of the
view access is automatically done by the system, i.e., Maotai
2.0. If a view is accessed without view acquisition, a segmenta-
tion fault will occur, and the system will alert the programmer
about which view is accessed without acquisition. The pro-
grammer can easily fix the bug by inserting Vpp acquire view
and Vpp release view into the faulted code section.

The extra cost of this data race prevention scheme is the
overhead of the memory protection. In Maotai 2.0, this cost
is very low. On a Sun T2000 Server equipped with a 1GHz
UltraSPARC T1 processor [29], micro-benchmarking results
demonstrate that the overhead of memory protection added
to the view primitives is generally very low (around 2-3µs).
The exception is Vpp acquire view, requiring up to 35µs ex-
tra, which covers the essential overhead of the memory protec-
tion mechanism (see Table 1). Note that Vpp acquire Rview
and Vpp release Rview means acquiring and releasing read-
only views.

Table 1: Breakdown of view primitive costs (in µs)
Primitive no prot prot cost
Vpp acquire view() 3.14 39.08 35.94
Vpp acquire Rview() 3.60 6.32 2.72
Vpp release view() 1.91 4.54 2.63
Vpp release Rview() 1.99 4.64 2.65

However, in our application benchmarks, this overhead does
not cause noticeable difference in application speedup. Table 2
shows the speedups (at 32 processes) of our applications with
and without memory protection in Maotai 2.0. We have six
benchmark applications: Successive Over-Relaxation (SOR),
Gaussian Elimination (GE), Integer Sort (IS), Neural Network
(NN), Mandelbrot, and Mergesort. For details of these appli-
cations, refer to Section 5. As we can see from Table 2, in all
32-process benchmark cases, the difference is around 0.5%.

Table 2: Effects of memory protection on benchmark
application speedups with 32 processes (in µs

Application no prot prot
SOR 16.82 16.77
GE 22.41 22.36
IS 16.51 16.47
NN 16.98 16.92
Mandelbrota 7.61 7.60
Mergesort 12.52 12.50

aspeedup with eight processes

One issue about the implementation is that memory protec-
tion such as mprotect() is page-based. Therefore, in order to
protect view data properly, memory space allocated to a view
is aligned by pages. This can result in memory space wastage.
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Table 3 shows the requested and actual sizes of the memory
space allocated by VOPP in our benchmark applications. The
page size is 8kB and 32 processes are used when the data are
collected. From this table, it can be seen that some applica-
tions like GE and Mandelbrot, which have many views that
do not exactly fit a page, have a higher proportion of memory
wastage (up to 51%), though other applications have less than
7% wastage.

Table 3: Requested vs actual VOPP shared size (in
kB) in different applications

Algorithm Requested Actual Wasted Percent
wasted

SOR 4,097 4,194 97 2.3
GE 64,016 98,329 34,313 34.9
IS 4,194 4,194 0 0
NN 272 295 23 7.8
Mandelbrot 2,000 4,096 2,096 51.2
Mergesort 1,600,001 1,600,274 273 0.02

However, with architectural support for variable-size
pages [6, 36], this memory wastage can be greatly reduced.

The programmers can also choose to use the above mpro-
tect()-based data race mechanism for debugging mode only.
After they are sure there is no more data race in the program,
the view protection can be removed and different views can
be packed into the same page, in which way the above extra
memory space can be saved at run time.

2.3 Related Works

Shared memory systems have different approaches to the data
race issue. In most systems (such as OpenMP [24], Cilk [30],
Pthreads [23] and UPC [31]), locks are not associated with
shared objects and programmers are responsible for arranging
locks properly to prevent data races, therefore these systems
are prone to data races and deadlocks caused by programming
errors.

Transactional memory is very convenient for parallel pro-
gramming. However, its major goal is to guarantee atomicity
of memory accesses without locking, instead of addressing the
data race issue. It rolls back one or more conflicting transac-
tions if atomicity may be violated. Therefore, it never removes
data races. Also live-lock is an issue with transactional mem-
ory (all competing processes repeatedly roll back and make no
progress).

Deterministic Parallel Java (DPJ) [4, 5] is a data-centric
object-oriented shared-memory concurrent model based on
Java language extension. It expresses parallelism by using
parallel-for construct (foreach and cobegin block. The cobe-
gin block treats each statement within the block as a separate
task and spawn all at once. These tasks are synchronized at
the end of the block. In DPJ, the compiler uses the “type
and effect” system on classes and methods to statically check
whether two threads in a foreach or cobegin block can be ex-
ecuted concurrently, if not, then the tasks will be run serially
instead in the order they are listed to ensure determinacy. Un-
der the “type and effect” system, concurrent objects are allo-
cated in a “region”. “Region” is a type under DPJ and must
be declared within a concurrent class before use. Within a
concurrent class, data fields can be assigned to either the ob-
ject’s region or be subtyped to a different region. Subtyping
allows easy management of recursive data structures, such as
tree nodes. Each method must state its “effects” on all regions
it accesses (read or write). The compiler first ensures that all
effects are correctly declared by each method. Then by using
the region type and effects information, both the compiler and

the runtime mechanism check whether two potentially concur-
rent threads “commute” (i.e. whether the threads access dis-
joint regions, and for regions that both access, none writes to
the common region). If the threads “commute”, they will be
executed concurrently, otherwise they will be executed serially
in the order they are written, thus ensuring determinacy.

The concept of “region” in DPJ is similar to “view”
in VOPP that both models bundle access management into
shared objects to relieve programmers from the responsibility
of manually setting locks to prevent data race. However, DPJ
avoids the data race problem through serial execution, while
VOPP detects the data races at runtime and helps the pro-
grammer fix the bugs.

3 Advanced Features in Maotai
2.0

Apart from data race prevention, Maotai 2.0 also offers primi-
tives for acquiring multiple views in order to avoid deadlocks,
producer/consumer views, and system queues to enhance pro-
grammability and performance. These features are discussed
below.

3.1 Deadlock Avoidance

Similar to data race, deadlock is another pain that can hap-
pen easily but is difficult to debug in shared-memory parallel
programming. In VOPP, deadlock can happen if views are ac-
quired in a nested way and different processes acquire them in
different orders.

For example:

P1 P2

A_V(1)

A_V(2)

A_V(2)

A_V(1)

/* here P1 holding view 1 waits for view 2

which is held by P2, but P2 will not

release view 2 until it gets view 1

----> DEADLOCK */

..... ......

R_V(2) R_V(1)

R_V(1) R_V(2)

In the above example, A V is Vpp acquire view and R V
is Vpp release view. The example shows that if P1 is holding
view 1 while P2 is holding view 2, deadlock occurs.

To avoid deadlocks due to acquiring multiple views in differ-
ent orders, Maotai 2.0 offers a primitive for acquiring multiple
views. Programmers can list all views to be acquired (in any
order) with this primitive which will acquire the views in a spe-
cific, same order. In this way, there is no chance for deadlocks
to happen.

Below is an example illustrating the use of the primitive for
acquiring multiple views:

/* acquire access to both view 0 and 1 */

Vpp_acquire_multiviews(0, &ptr0, 1, &ptr1);

ptr0->result += compute0(ptr0->a, ptr1->a);

ptr1->result += compute1(ptr1->a, ptr0->a);

Vpp_release_view(); /* release all views */
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In the above example, the process acquires both view 0
and 1 with Vpp acquire multiviews which puts the view base
addresses into ptr0 and ptr1. Finally the process releases both
views with Vpp release view.

In order to ensure deadlock-free operation, the deadlock-free
mode must be used where nested view acquire calls are forbid-
den (i.e. after Vpp acquire view() or Vpp acquire multiviews()
is called, Vpp release view() must be called to release all views
before either view acquire construct can be called again). How-
ever in dynamic nested view acquire cases such as list traversal,
it is difficult to know which views (in this case list nodes) to
acquire in advance where inner views can only be decided after
the outer views are processed. In this case, requiring all views
to be acquired together would be too restrictive and nested
view acquire constructs must be allowed. Programmers are re-
sponsible to be clear about the algorithmic behaviours in order
to avoid deadlocks.

Nevertheless, the above primitives provide an avenue for
novice programmers to avoid unnecessary deadlocks.

3.2 Producer/Consumer View
The producer/consumer view is provided to allow direct expres-
sion of producer/consumer relationships in parallel algorithms.
Traditionally barriers are used to synchronize the producer and
the consumers in shared memory parallel programming. With
the introduction of the producer/consumer view, programming
the producer/consumer problem is more straightforward (see
examples below) and thus increases programmability. In addi-
tion, a producer/consumer view can avoid expensive barriers,
which makes all processes wait and whose cost would increase
with increasing number of processes.

The producer/consumer view is implemented as a queue.
The producer enqueues a new version of the view by acquiring
the view, producing the data, and finally releasing the view.
The consumer dequeues a version of the view by acquiring read-
only access to the view. After it finishes with the view, it
releases its version of the view whose buffer may be recycled
by the producer.

There are two types of producer/consumer views:

Producer/Consumer Single (PCS) is used in situations where
all consumers share the same queue. That means, when
a version of the view is dequeued by a consumer, it is not
accessible to other consumers.

Producer/Consumer Multicast (PCM) is used for situations
where each consumer has its own queue. The producer
makes a copy of each version of the view for each con-
sumer. Therefore, each version of the view is broadcast
to all consumers.

The following example demonstrates the use of PCS.

Vpp_alloc_view(0, sizeof(Foo), PCS);

Vpp_barrier();

......

producer: consumer:

ptr=Vpp_acquire_view(0); ptr = Vpp_acquire_Rview(0);

produce(ptr->a); consume(ptr->a);

Vpp_release_view(); Vpp_release_view();

However, for the same problem, the following barrier version
has to worry about the synchronization between the producer
and the consumer.

Barrier version:

Vpp_alloc_view(0, sizeof(Foo), SWV);

Vpp_barrier();

......

producer: consumer:

ptr=Vpp_acquire_view(0);

produce(ptr->a);

Vpp_release_view();

Vpp_barrier(); Vpp_barrier();

ptr=Vpp_acquire_Rview(0);

consume(ptr->a);

Vpp_release_view();

In our experiments, the SOR and GE benchmark applica-
tions demonstrate that producer/consumer views (both PCS
and PCM) give a better speedup than all other barrier based
implementations, including their VOPP versions that use bar-
riers. Figure 1 and 2 shows the speedup difference between
applications using barriers and those using producer/consumer
views.
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Figure 1: Speedup of SOR in VOPP
Figure 1 shows the speedup of SOR which uses PCS to im-

prove its performance. Compared with its barrier implementa-
tion, the improvement of speedup is 11.2% at 32 processes.
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Figure 2: Speedup of GE in VOPP
Figure 2 shows the speedup of GE which uses PCM to im-

prove its performance. Compared with its barrier implementa-
tion, the improvement of speedup is 4.2% at 32 processes.

3.3 System Queues

System queues are provided in Maotai 2.0 to store view IDs.
This facility allows easy implementations for task queues. Task
queues are good for load balancing parallel applications (e.g.
Mandelbrot and tree search algorithms), where the data for
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each job or node can be put in a view and its ID is simply
enqueued in a system queue for other processes to work on.

Below is an example showing how a system queue serves as
a task queue in VOPP.

if (0 == Vpp_proc_id) {

/* each row is a job (and a view), and master

process enqueue all jobs (view IDs) */

for (y = 0; y < ydim; y++) {

Vpp_alloc_view(y, xdim * sizeof(int), SWV);

init_view(y);

Vpp_enqueue_view(0, y);

}

}

Vpp_barrier();

/* now all processes start working ... */

while ((vid = Vpp_dequeue_view(0))

>= 0) {

ptr=Vpp_acquire_view(vid);

/* work on the row ....... */

Vpp_release_view();

}

In the above example, the master process allocates and en-
queues all jobs through enqueuing their view IDs into the sys-
tem queue (numbered 0). Then all processes dequeue from
system queue 0, get a view ID and process the jobs until the
queue is empty. Without the system queues, programmers have
to set up similar queues by themselves.

In Maotai 2.0, the enqueue and dequeue calls are efficient.
In a microbenchmark test on a Sun T2000 server, an enqueue
call only takes 2.65µs and a dequeue call takes 2.56µs.

4 Programmability of VOPP

VOPP has improved the programmability of shared memory
parallel programming since it eliminates data races and can
avoid unnecessary deadlocks. In addition, producer/consumer
views and system queues are provided in Maotai 2.0 to further
improve its programmability. However, its distinct difference
from other shared memory programming models is that VOPP
requires views to be defined before accessing them.

From a syntactic standpoint, view definition does not im-
pose any extra burden on programmers. In our current im-
plementation, views are defined with Vpp alloc view, which is
similar to malloc.

For most applications such as IS and SOR, views do not
change once they are created. For those applications, view
definition is very natural and straightforward. However, there
is some small group of applications such as Mergesort that have
changing views and have to re-organize the views (create new
views and destroy old views). For those applications, VOPP
does trade off some programming convenience for data race
prevention.

Fortunately, Maotai 2.0 has provided a Multiple Writer
View (MWV) to offer the programming convenience for expe-
rienced programmers. A MWV is a view that can be accessed
simultaneously by multiple processes. Therefore, it is up to
the programmer to avoid data races in a MWV. However, in
contrast to other programming models such as Cilk++ [9] and
OpenMP [24], the data races are confined in the current MWV
should they occur.

In some shared memory parallel programming models [9,
24, 26], there are reduction constructs for programmers to avoid
data races in parallel for-loops. Apart from the fact that the

syntax of reduction constructs is more complex than view def-
inition of VOPP, the operations of a reduction construct have
to be pre-defined, which rules out any ad-hoc operations on the
reduction construct from third-party software. In addition, re-
duction constructs require the operations to be commutative,
which restricts their usability. Fortunately, the view constructs
in VOPP are free from these restrictions.

5 Performance Evaluation with

Other Models

In this section, we compare the performance of Maotai 2.0 with
other modern shared memory parallel programming models
like OpenMP, Cilk and Pthreads. Our benchmark applica-
tions include Successive Over-Relaxation (SOR), Integer Sort
(IS), Gaussian Elimination (GE), Neural Network (NN), Man-
delbrot and Mergesort. The experiments are carried out on a
Sun T2000 server with an UltraSPARC T1 processor and 16GB
memory. The UltraSPARC T1 has eight cores, each of which
is clocked at 1GHz and supports four hardware threads. In to-
tal, the UltraSPARC T1 processor supports up to 32 hardware
threads [29]. Linux kernel 2.6.24-sparc64-smp and the com-
piler gcc-4.4 are used during benchmarking. The benchmark
applications are implemented on Maotai 2.0, Cilk-5.4.6 [30],
OpenMP 3.0 [24] and Pthreads [23]. All programs are com-
piled with the optimization flag “-O2”. In each case, speedup is
measured against the serial implementation of the benchmark
algorithm. The elapsed time calculated in each case excludes
initialization and finalization costs, because they are one-off
and are difficult to measure within the program in models that
involve source-translation, such as Cilk and OpenMP. Instead,
startup and finalization times for each model are measured sep-
arately. Runtime of functions that are irrelevant to the orig-
inal application, such as generation of random sequences and
result-verification, are also excluded.

Successive Over-relaxation (SOR) is a multiple-iteration al-
gorithm where each element is updated by the values of the
neighbouring elements from the last iteration. In this experi-
ment, the implementation is adapted from [37]. Matrix size is
set to 8000 ∗ 4000 and 40 iterations are performed.

The Integer Sort (IS) algorithm used in this experiment is
based on the NPB version [32]. This is a counting-sort algo-
rithm. In this experiment, the problem size is 226 integers with
a Bmax of 215 and 40 repetitions are performed.

The Gaussian Elimination (GE) implementation from [34,
37] is used in this experiment and the matrix size is set to
4000 ∗ 4000.

The parallel Neural Network (NN) implementation is based
on Pethick’s work [25]. This algorithm trains a back-
propagation neural network in parallel using a training data
set. In this experiment, the size of the neural network is set to
9 ∗ 40 ∗ 1 and the number of epochs is set to 200.

The Mandelbrot algorithm is embarassingly-parallel. How-
ever, the workload of pixels is extremely uneven, and thus re-
quires a load-balancing mechanism to prevent process starva-
tion [12, 35]. In this experiment, the size of the screen is set to
500 ∗ 500, the maximum number of iterations is set to 500 and
each pixel is calculated 5000 times. The maximum number of
processes or threads is set to eight for this experiment because
hyperthreading relies on memory latency. Since this applica-
tion has very few memory accesses, there is little speedup when
more processes or threads than the number of CPU cores are
used (the UltraSparc T1 has eight cores).

The parallel Mergesort algorithm in Cilk is recursive [18, 30]
and is implemented verbatim in Cilk and OpenMP to test
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performance of the newly-available task-parallelism feature in
OpenMP [1]. The array consists of 200 million integers. This
algorithm is converted to the iterative version for VOPP and
Pthreads. The iterative version requires the number of pro-
cesses to be a power of 2. This version first divides the array
equally between the processes and each process sorts its own
subarray. Then the merge procedure largely models the recur-
sive version of the parallel merge algorithm. Both MWV and
SWV versions of the VOPP implementation are included to
test effects of the extra memory copying needed in SWV.

Since the UltraSPARC T1 has only one floating-point unit,
all floating-point calculations in the above algorithms are con-
verted to integer calculation to avoid the bottleneck at the
floating-point unit. Removal of floating pointing calculations
is done in all implementations and does not affect the scalabil-
ity of the algorithm.

5.1 Experimental Results

The experimental results are illustrated with speedup curves.
For each application, we give the speedup curves using Maotai
2.0, Cilk, OpenMP and Pthreads. In the discussion below, n
refers to the number of processes or threads.

Speedup is calculated by:

speedup =
timeserialimplementation

timeparallelimplementation
(1)

To ensure fair comparison, the same serial implementation
of each benchmark application is used as a baseline for calcu-
lating speedups of all parallel programming platforms.

For SOR (Figure 3), Maotai 2.0 has the best performance.
At n = 32, Maotai 2.0 is 13.6% better than Cilk, 17.9% better
than OpenMP and 12.0% better than Pthreads.
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Figure 3: Speedup of SOR

For GE (Figure 4), Maotai 2.0 again has the highest
speedup. At n = 32, Maotai 2.0 is 7.4% better than Cilk;
33% better than OpenMP and 7.8% better than Pthreads.
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Figure 4: Speedup of GE

For IS (Figure 5), there are less variations in speedups in dif-
ferent models. However at n = 32, Maotai 2.0 is 5% faster than
Cilk; 15% faster than OpenMP and 7% faster than Pthreads.
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Figure 5: Speedup of IS

For NN (Figure 6), all models have similar speedups. Mao-
tai 2.0 is 3.1% faster than OpenMP, but it is 1.8% slower than
Cilk and 0.2% slower than Pthreads.
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Figure 6: Speedup of NN

For Mandelbrot (Figure 7), there are relatively little differ-
ences between speedups of different models. At n = 8, Maotai
2.0 is 0.8% faster than Cilk; 7.2% faster than OpenMP and
3.3% faster than Pthreads.
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Figure 7: Speedup of Mandelbrot
For Mergesort, speedup of Maotai 2.0 is slower but com-

parable with other shared-memory models, though the SWV
version is clearly not scalable (Figure 8). At n = 32, Maotai
2.0 is 9% slower than Cilk; 1% faster than OpenMP and 2%
slower than Pthreads. The MWV version is 3.5 times faster
than the SWV version.
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Figure 8: Speedup of Mergesort
Note that, in the above collected results, the standard de-

viations of the elapsed time at n = 32 for Maotai 2.0, Cilk
and Pthreads cases are less than 0.1s, but the standard devia-
tions of the elapsed time for OpenMP are between 0.2 to 0.5s,
which may be due to the random nature of the OpenMP task
scheduler.

Table 4 presents the startup and finalization time of each
system. As expected, startup and finalization costs for thread-
based models including Cilk, OpenMP and Pthreads are lower
than process-based system like Maotai 2.0.

Table 4: Combined startup and finalization time (in
ms) for different number of processes or threads on a
Sun T2000 server

1 2 4 8 16 24 32
Cilk 2 2 2 2 2 2 2
OpenMP 2 2 2 2 2 2 2
Pthreads 2 2 2 2 2 2 2
Maotai 2.0 9 10 11 13 15 19 22
Serial 2

All thread-based models have the same combined startup
and finalization time as the serial version regardless of the num-
ber of threads. Maotai 2.0 has a startup/finalization cost of

9ms (at n = 1) and the cost grows to 22ms at n = 32, almost
linear to the number of processes. Despite Maotai 2.0 having a
larger startup/finalization overhead, the 22ms is still negligible
compared to the time consumed in n = 32 cases, which is at
least 10 seconds. The startup/finalization time in Maotai 2.0 is
only a one time event, therefore this overhead has a negligible
effect on the speedup curves.

5.2 Discussion
The following is an analysis on why Maotai 2.0 performs better
or worse than other systems.

As we mentioned before, the producer/consumer view in
Maotai 2.0 enhances both programmability and performance
of SOR and GE. In SOR, PCS is used to pass boundary rows
to neighbour processes, thus allowing the natural expression
of the message-passing relationship without the use of barrier,
which would hold up irrelevant processes. Apart from pro-
grammability, the resultant performance gain is reflected in
Figure 1, where the PCS VOPP version is 11.2% faster than
the barrier-based SOR version.

Similarly in GE, PCM is used to broadcast the pivot row and
the swap index, which improves programmability by mimicking
the broadcasting semantics in the parallel algorithm. Also the
removal of barriers by PCM improves the VOPP performance
by 4.2% (Figure 2). Time is saved by replacing lock and barrier
primitives with a PCM primitive.

Multiple-Program Multiple-Data (MPMD) models such as
Cilk/Cilk++ and OpenMP do not have barriers because in this
case, the parallel calculation part is conveniently expressed by
parallel for-loop (or in case of Cilk, spawn recursive task de-
composition threads and sync at end of parallel calculation)
and the pivot part is run serially. Synchronization is implicit
in the parallel for-loop construct, where tasks are forked at the
beginning of the loop and joined at the end of the loop, there-
fore these fork-join actions are essentially barriers and have the
similar overhead to the barriers in VOPP. In multiple-iterative
cases such as GE and SOR, the cumulative task scheduling and
synchronization overheads can be considerable. Therefore, the
Maotai model would be more suited for these problems.

The introduction of system queues for programmability in
Maotai 2.0 does not come at the expense of performance. The
efficiency of the system queue primitives can explain the slight
performance advantage over other models in Mandelbrot.

For IS, the performance advantage seen in Maotai 2.0 over
other models can be attributed to the split of the global keyden
array into nproc views. In the global keyden construction step,
each process updates all global keyden parts in the round-robin
fashion, starting from the proc idth part. Here, the SWMR
view access pattern removes the need for barriers for prevent-
ing data race due to multiple processes updating an element
simultaneously. This removal of barriers can contribute to the
performance gain by the VOPP program.

For NN, since multiple items are updated by multiple pro-
cesses at the end of the iteration, barriers are still used in the
VOPP program. However the performance of Maotai 2.0 is still
comparable to other models, which shows that being data race
free has little impact on performance.

However, the SWMR model in VOPP does have its limita-
tions in cases where the access pattern changes in every itera-
tion, as we mentioned in Section 4. In those cases, view data
must be copied to a local buffer of a process, where the process
works on the data. After the data is processed, the view is ac-
quired again by the process and the results copied back to the
view. In our application of Mergesort, the resultant excessive
memory-copying renders the implementation unscalable (Refer
to VOPP-SWV in Figure 8). However, the alternative MWV
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implementation allows multiple processes to work directly on
the view and avoid memory copying. This flexible multiple
write view (MWV) made the speedup of Maotai 2.0 compara-
ble to other shared-memory models, though the programmer
has to take the risk of data races within the view.

Although Cilk is internally implemented using Pthreads,
there are cases, such as Mergesort, GE, IS and Mandelbrot
where Cilk performs better than Pthreads (Also for Mergesort
and NN, it is better than Maotai 2.0). This can be attributed
to the recursive task decomposition of Cilk ensuring cache lo-
cality [18].

The parallel for-loop in OpenMP allows easy specifica-
tion of data-parallelism. However, it would introduce a task-
scheduling cost, especially when the workload is fixed and no
load-balancing is required. The lower speedups of GE, SOR
and NN of OpenMP can be attributed to this parallel for-loop
overhead. Although Cilk++ cannot be benchmarked in this ex-
periment because sparc64-smp is not supported, its equivalent
construct cilk for can also have the similar task-scheduling
overhead.

As we noticed, OpenMP has larger standard deviations in
its elapsed time. It may suggest that the OpenMP scheduler
has some random behavior. For Mergesort, although the recur-
sive OpenMP implementation has benefited from cache locality
like Cilk, its worse performance (compared to Cilk) can be at-
tributed to the inefficiency of its task scheduler.

6 Conclusions and Future Work
Our data race prevention scheme based on views proves to be
efficient and adds little extra overhead to parallel program-
ming systems. Though there is some memory wastage due to
page alignment in the implementation, architectural support
for variable-size pages will significantly reduce the wastage.
Even with a fixed page size, view constructs are useful to
remove data races. Compared with reduction constructs in
OpenMP, Cilk and TBB, views are more flexible and allow
ad-hoc operations.

With the advanced features in Maotai 2.0, the perfor-
mance and programmability of VOPP are enhanced. Though
strict SWV views are rigid for some application like Merge-
sort, Maotai 2.0 offers MWV views to avoid dynamic view re-
organization in the application.

Performance results demonstrate that Maotai 2.0 is very
competent among modern parallel programming models, even
with the unique data race prevention scheme.

In the near future, we will investigate automatic detection
of view access and compiler support of VOPP. Currently views
must be explicitly acquired and released, which can be removed
with run-time/compiler support. In automated view detection,
the beginning of view access can be defined as the first access
of view data. However, to define a releasing point (aka. exit
protocol) [7, 33] could be challenging.

To allow natural expression of recursive algorithms such as
tree search and parallel mergesort, a task model such as Cilk
will also be investigated. This avenue would bring the advan-
tage of recursive task decomposition, data parallelism features
(such as parallel for loop in Cilk++ and OpenMP) and the
features of VOPP together.
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