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Abstract—This paper proposes a scheme for automatic detec-
tion of view access in the View-Oriented Parallel Programming
(VOPP) model. VOPP is a shared-memory-based, data-centric
model that uses “views” to bundle mutual exclusion with data
access. Based on the automatic detection scheme, a view is
automatically acquired when first accessed, and automatically
released at proper time. This scheme simplifies the VOPP
model and prevents programming errors. With this scheme, the
programmability of VOPP is similar to transactional memory
models. In addition, VOPP can eliminate data races without
compromising performance. A new VOPP implementation,
Maotai 3.0, has been developed and incorporated the above fea-
tures. Experimental results demonstrate that the performance
of Maotai 3.0 surpasses transactional memory models such as
TL-2.
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I. INTRODUCTION

Parallel programming is becoming mainstream since mul-
ticore processors have become pervasive. There is a press-
ing need for parallel programming models to facilitate
the performance and reliability of applications. Yet current
shared-memory programming models, such as OpenMP [1],
Pthreads [2] and the transactional memory model TL-2 [3],
are prone to errors, e.g. data race, which are difficult to de-
bug due to their non-deterministic behavior. Impacts of these
programming errors will be magnified in grid and cloud
environments, where applications are used by thousands of
users across the world.

Data race, which happens when multiple
processes/threads access the same object concurrently
and at least one of them writes to the variable, is a chronic
problem in parallel programming. The View-Oriented
Parallel Programming (VOPP) model is designed to
eliminate data race [4, 5].

VOPP is a data-centric model, where shared data objects
are partitioned into “views” by the programmer according
to the memory access pattern of a program. The grain (size)
and content of a view are decided by the programmer as part
of the programming task, which is as easy as declaring a
data structure or allocating a block of memory space. Each
view can be created, resized, merged, or destroyed at any
time in a program. The most important property for views

is that they do not intersect with each other. Before a view
is accessed (read or written), it must be acquired; after the
access of a view, it must be released. Normally, single-writer
view (SWV) will be used, which adopts the single-writer-
multiple-reader (SWMR) protocol to allow multiple readers
(i.e. at any given time, a view can be either read by multiple
processes or written by a single process) [6, 7]. Like other
data-centric models [8], VOPP bundles mutual exclusion and
data access together and therefore relieves the programmer
from managing locks directly to safeguard shared data.

Data-centric models are safer than code-centric models
that use locks to protect critical code sections. Data-centric
models are only interested in which shared object is used
(and thus held when being used). Using a shared object
longer than necessary will only decrease the performance
of the program, but will not cause data races. In contrast,
in code-centric models, programmers must demarcate each
critical section of the program that accesses shared data,
and guard it with locks or atomic transactions. Very often
mistakes in such demarcations can result in data races.

However, in Maotai 2.0 [5], which is a VOPP imple-
mentation for multicore machines, views must be explicitly
acquired before access and released after access. It is often
troublesome to manage view acquire/release constructs.

For example, below we show a serial version of a list
traversal program and its Maotai 2.0 version:

/* serial version */

typedef struct Node_rec Node;

struct Node_rec {
Node *next;
Elem elem;

};

Node *list_search(Elem elem,
Node *list)

{
while (NULL != list) {
if (elem == list->elem) {

return list;
}
list = list->next;

}
return NULL;

}

/* Maotai 2.0 */

typedef struct Node_rec Node;

struct Node_rec {
Node *next;
Elem elem;

};

Node *list_search(Elem elem,
vid_type vid)

{
Node *list =

Vpp_acquire_view(vid);

while (NULL != list) {
if (elem == list->elem) {
Vpp_release_view();
return list;

}
list = list->next;

}
Vpp_release_view();
return NULL;

}



The above list traversal in Maotai 2.0 is prone to error,
because it is easy to forget to release the view before calling
return within the while loop. If that happens, the next pro-
cess that is acquiring the view will wait forever. Our scheme
for automatic detection of view access can resolve such
problems by acquiring and releasing views automatically,
which has greatly improved the programming interface of
VOPP (refer to Section II for details). Additionally, the cost
for the automatic detection is relatively small according to
our experimental results.

A. Contributions of this paper

This paper has the following contributions. First, we have
proposed and implemented the scheme for automatic detec-
tion of view access, which improves the programmability of
VOPP and no longer requires programmers to use explicit
view acquire/release constructs. A view is automatically
acquired when first accessed and released when leaving the
scope of the view acquisition. Second, we have shown the
automatic detection scheme improves the programming con-
venience of VOPP, the programmability of which is similar
to transactional memory models in many cases. Third, we
have implemented the parallel programming system, Maotai
3.0, which is based on the VOPP model with the automatic
detection scheme. Performance results show that Maotai 3.0
has superior performance over transactional memory models
like TL-2 0.9.6 [3].

The rest of the paper is organized as follows. Section
II describes the automatic detection scheme, the language
constructs, and implementation details of Maotai 3.0. Sec-
tion III compares the programmability of Maotai 3.0 with
transactional memory models. Section IV covers experimen-
tal results and performance evaluation. Section V discusses
related work. Finally, Section VI gives the conclusions and
the future work.

II. THE PROGRAMMING MODEL AND IMPLEMENTATION
DETAILS OF MAOTAI 3.0

The introduction of automatic detection of view access
helps remove the explicit view acquiring and releasing,
and thus greatly simplifies the programming interface to
shared data access in Maotai 3.0. It reduces extra code
instrumentation needed to parallelize existing serial code.
This section will discuss the language constructs and their
semantics used in Maotai 3.0, as well as the implementation
details of the automatic detection scheme.

A. Automatic detection of view access

In this scheme, a view is automatically acquired when
its memory is first accessed. Then the view is automatically
released when control leaves the scope of view acquisition.

The scope of view acquisition is often the function that
first accesses the view. During the execution of such a
function, the executing process acquires the view when it is

first accessed, and automatically releases the view when the
function returns. Our applications show that, in most cases,
this functional scope of view acquisition is the intention
of the programmer. Below is an example that shows at
what time a view, called foo, is acquired and released
automatically in the function func.
VPP void func(void) {
Foo *foo = Vpp_alloc_view(sizeof(foo[0]), SWV);

.....
foo->index = 5; /* view foo acquired */
printf("%d\n", foo->val);
....
....

} /* view foo released */

Bearing in mind the above scope of view acquisition, our
list traversal code becomes as follows.
/* Maotai 3.0 */

typedef struct Node_rec Node;

struct Node_rec {
Node *next;
Elem elem;

};

VPP list *list_search(Elem elem,
Node *list) {

while (NULL != list) {
if (elem == list->elem) { /* view acquired */

return list; /* view released */
}
list = list->next;

}
return NULL; /* view released */

}

In the list traversal code above, there is very little code
changes compared with the original serial code. The only
changes to the serial code are adding the keyword VPP as
an attribute of the function list search().

Compared with Maotai 2.0 [5], the programmers do not
need to keep track of view IDs and the acquire/release
statements.

The keyword VPP is used to declare that a function will
have effect on the scope of view acquisition. When a VPP
function returns, it will automatically release all views ac-
quired during the execution of the function, including those
views acquired in the callee functions. Also the subsequent
callee functions have access to the views once they are
acquired.

For example, in the example code below, func1 acquires
view 1 and then calls func2. func2 inherits the acquisition
of view 1 throughout its scope (Figure 1).
/* a third-party non-VPP library function */
void func3() { /* inherit v1 and v2 */

ptr_3->val = 0; /* acquire v3,
........ but v3 belongs to

immediate VPP ancestor (func2())
and will only be released
at the end of func2() */

}

VPP void func2(Object *ptr_1) { /* inherit v1 */
ptr_1->done = 1;
....
ptr_2->index = /* acquire v2 */
ptr_1->index + 1;



....
func3(); /* func3 inherits v1 and v2 */
....
....

} /* release v2, v3 */

VPP void func1() {
ptr_1->index = 0; /* acquire v1 */
....
func2(ptr_1); /* func2 inherits v1 */
....

} /* release v1 */

view 2

function func3() called by func2()

view 3 is still considered to be acquired

by the VPP func2() and will remain

acquired until control leaves func2()

calls

calls

func3()

VPP func2()

VPP func1()view 1 acquired in this function

view 1 inherited from func1(),

so can be used directly by func2()

view 3
view 1,2 inherited from func2()

view 3 is actually acquired by the non−VPP

Figure 1. Inheritance of views acquired by VPP functions

Similarly, func2 acquires view 2 and calls func3. func3
inherits the acquisition of view 1 and 2 throughout its
execution.

However, since func3 does not have the VPP attribute, it
has no effect on the scope of view acquisition. Therefore,
view 3 that is acquired during the execution of func3 will
not be released when func3 returns. The scope of view
acquisition for view 3 is func2, the immediate VPP ancestor
of func3, which will release view 3 as well as view 2 when
it returns.

B. View Scope Construct

The automatic view access detection model described
above works well in most cases. However, in some cases, a
view acquired by a callee function is actually intended to be
held until the end of the current function. Even though we
can achieve this by making the callee function a non-VPP
function, this restricts the use of the callee function as a VPP
function. The following example illustrates the problem in
more details.
VPP void bar(char *shared_str) {
......
shared_str[0] = ’a’; /* view shared_str acquired */
.
.
.

} /* view shared_str released */

VPP void foo(char *shared_str) {

.....
bar(shared_str); /*view shared_str acquired and

released by bar, but
.... actually intended to be
.... acquired until end of foo()*/
....
....
str[1] = str[0] + 1; /* RW access to view
.... shared_str reacquired */
....

} /* shared_str released */

In the example above, foo() intends to hold the view
shared str during its execution, though it is acquired during
the execution of bar(). However, since bar() is a VPP
function, and shared str is acquired during the execution
of bar(), under the automatic detection scheme, shared str
will be released when bar() returns. Therefore, shared str
will be re-acquired when it is accessed again in foo(). In this
situation, the view acquisition of shared str is unwittingly
fragmented. Though there is no data race involved in this
situation, it may affect the atomicity of the operation on
shared str intended by the programmer.

To address this problem, the view scope construct
VPP View(access type, pointer to view,...) {...} is proposed
to allow views to be automatically acquired at the beginning
of the declared scope, where access type can either be
VPP RO or VPP RW, which stand for read-only access
and read-write access respectively. Programmers can use
view scope constructs to manually define the scope of view
acquisition. Any views automatically acquired within a view
scope construct, including those acquired in non-VPP callee
functions, will be release when control leaves the declared
view scope.

In summary, the view scope construct works according to
the following rules:

1) A view scope construct acquires the listed views at the
beginning of the scope according to the listed order.

2) Within the scope, accesses of other unacquired views
are still automatically detected and acquired at their
first access.

3) All views acquired within the view scope, including
those acquired by the non-VPP callee functions, will
be released automatically when control leaves the view
scope construct.

With the view scope construct, the above example can
be written as below to achieve the programmer’s intended
scope of view acquisition.
VPP void bar(char *shared_str) { /* view shared_str */

...... inherited
shared_str[0] = ’a’;
.
.
.

}

VPP void foo(char *shared_str) {
.....
VPP_View(VPP_RW, shared_str) { /* view shared_str acquired */
bar(shared_str); |
.... |
.... |



str[1] = str[0] + 1; |
.... |

} /* view shared_str no longer
needed, and is released at
the end of VPP_View scope

/* more calculations.... */ instead of the end of foo()
........ in order to maximize the

concurrency of view
accesses */

}

VPP foo()

view shared_str

calls

view shared_str is acquired at the beginning of the scope

view shared_str inherited from view scope

VPP bar()

VPP_View(shared_str)

Figure 2. Inheritance of views acquired by VPP functions and view scopes

In the example above, a view scope construct is used to
acquire the view shared str in the caller foo(), as intended
by the programmer, and the callee bar() inherits the view
shared str from foo() (refer to Figure 2 for the inheritance
of views).

In addition, view scope constructs allow programmers to
define exactly when views are acquired and released, so
views can be released as soon as they are not needed. In
this way, views are not unnecessarily held until the end of
the function and thus do not unnecessarily hinder concurrent
accesses of views.

C. Deadlock free mode

The automatic view access detection scheme acquire
views automatically as they are first accessed, therefore
views may be acquired in different orders by different
processes. As a result, the compiler cannot guarantee that
views are acquired in a consistent order, deadlock remains
possible with the automatic detection scheme.
Process 0 Process 1
{ {
/* foo acquired */
foo->index++;

/* bar acquired */
bar->index++;

/* acquire bar,
but held by P1 */

bar->val = foo->index;

/* acquire foo,
which is held by P0 */

/* DEADLOCK */
foo->next = bar->val;

} }

In the example above, foo and bar are separate views.
Process 0 (P0) acquires foo and process 1 (P1) acquires
bar first, then P0 tries to acquire bar, but bar is already
held by P1, so P0 blocks. At the same time, P1 tries to

acquire foo, which is held by P0 (also blocked). As a
result, deadlock occurs. This scenario can happen when
inexperienced programmers fail to ensure that views are
accessed in a consistent order.

To prevent deadlocks, deadlock-free mode is offered in
Maotai 3.0. The deadlock-free mode can be specified during
initialization of a VOPP session and is effective for the
whole VOPP session. A VOPP program starts with serial
execution. When parallel processing is desired, a VOPP
session is started with Vpp session() which creates multiple
processes to execute the same function in parallel. When
a VOPP session is finished, the program reverts to serial
execution, but can start another VOPP session anytime later.

The following rules are applied in the deadlock-free mode
to avoid deadlocks:

• Automatic detection of view accesses is disabled.
• All views must be explicitly listed in the

VPP View(access type, ptr to view,...) {...} view
scope construct. The system will acquire the listed
views at the beginning of the view scope construct
in the same system-determined order to prevent
deadlocks.

• Access to unacquired views will result in termination
of the program and an error message will be printed to
notify the user where the violation occurs, as in Maotai
2.0.

• Nesting of view scope constructs is forbidden.

D. Implementation details and overheads

In the automatic detection of view access scheme, we
use virtual memory protection (such as mprotect()) to detect
view access. Initially a view (consisting of a number of
pages) is protected against any access. When it is accessed,
a page fault will occur and the page fault handler will be
invoked to process the fault. We use this mechanism to
implement the automatic detection scheme.

A view is automatically identified and acquired when its
memory is first accessed (which can be detected by the page
fault handler that subsequently acquires the view). The view
is automatically released when control leaves the scope of
view acquisition, as defined by either the control scope of
the VPP function or the view scope construct.

Like Maotai 2.0, view acquisition is lock-based and is
implemented using Pthreads rwlock [2], which is based on
futex [9].

Therefore the overheads of Maotai 3.0 include:
• futex lock overhead
• virtual memory protection overhead
• view identification overhead (for calculating the view

identity at runtime from the accessed memory address)
• page fault handler overhead (only for automatic detec-

tion of view access)
The lock-based view acquisition itself incurs the futex

lock overhead and virtual memory protection overhead, the



automatic detection of view access incurs the rest of the
listed overheads.

To examine these overheads, a microbenchmark is run
on a Dell PowerEdge R905 server with four AMD Opteron
8380 quad-core processors running at 800MHz. Overhead is
measured for:

• basic pthread rwlock operations (pthread rwlock)
• explicit view acquire without runtime protection (still

requires view identification mechanism) (no prot)
• explicit view acquire with runtime protection (manual)
• automatic view access detection (automatic)
To amortize measuring noises, we have collected the

results by first measuring the execution time of 100,000
sequentially-executed identical operations and then calculat-
ing the average execution time of one operation. The results
are presented in Table I.

Table I
BREAKDOWN OF VIEW PRIMITIVE COSTS (IN µs)

Primitive pthread rwlock no prot manual automatic
a v() 0.08 0.94 4.15 15.24
a rv() 0.08 0.92 4.14 15.17
r v() 0.08 0.08 2.74 N/A
r rv() 0.08 0.08 2.73 N/A

Note: “a” stands for acquire; “r” stands for release; “v” stands for view
and “rv” stands for read-only view. In the pthread rwlock test, a v() stands
for pthread rwlock wrlock(); a rv() stands for pthread rwlock rdlock();
r v() stands for releasing the wrlock and r rv() stands for releasing the
rdlock.

The above results show that automatic detection mech-
anism does incur runtime computation overheads for view
identification, virtual memory protection and the page fault
handler. In automatic detection mode, it takes 15µs to
acquire a view, whereas it only takes 80ns to acquire a
pthread rwlock. The automatic detection overhead of 15µs
is small enough for most applications, as shown in per-
formance comparison between Maotai 2.0 (which has no
automatic detection) and Maotai 3.0 in Section IV. However,
this overhead would make applications requiring fine-grain
view partition and frequent view accesses unscalable. Also,
due to the page-based memory protection mechanism, all
view allocations must be page-aligned, which may waste
memory space.

In the future, to reduce the runtime overheads and the
waste of memory space, we will investigate compiler support
of VOPP to allow compile-time tracking of view allocation
and access, so that data-race free feature in VOPP can be
partially implemented at compile time.

III. PROGRAMMABILITY OF MAOTAI 3.0 AND
TRANSACTIONAL MEMORY MODELS

As mentioned in Section I and Section II-A, automatic
detection of view access improves programmability of Mao-
tai by eliminating programming errors in Maotai 2.0 arising

from forgetting to release acquired views, especially when
control leaves the scope not at the end of the scope (e.g. by
keywords such as break or return) as illustrated in the list
search example:
/* Maotai 2.0 */

typedef struct Node_rec Node;

struct Node_rec {
Node *next;
Elem elem;

};

Node *list_search(Elem elem,
vid_type vid)

{
Node *list =

Vpp_acquire_view(vid);

while (NULL != list) {
if (elem == list->elem) {
Vpp_release_view(); /* the list will be held forever

by this process if forgotten
to be released */

return list;
}
list = list->next;

}
Vpp_release_view();
return NULL;

}

However, this type of programming errors is eliminated
by automatic detection of view access in Maotai 3.0 (its
code snippet is shown below), since views are automatically
acquired and released by the runtime system.
/* Maotai 3.0 */

typedef struct Node_rec Node;

struct Node_rec {
Node *next;
Elem elem;

};

VPP list *list_search(Elem elem,
Node *list) {

while (NULL != list) {
if (elem == list->elem) { /* view acquired */

return list; /* view released */
}
list = list->next;

}
return NULL; /* view released */

}

Comparing the above two code snippets, we can see that
the lines-of-code (LOC) of the Maotai 3.0 version is around
20% fewer than the Maotai 2.0 version.

Moreover, as seen in the code snippets, converting a
serial program to Maotai 3.0 requires very little code in-
strumentation, apart from tagging some functions with the
keyword VPP. If programmers want to optimize the program
performance, they can easily fine-tune the program by using
the view scope construct to control how long a view is held.

However, in Transactional Memory (TM) models, pro-
grammers must manually instrument all code that access
shared data to put them into atomic constructs. For example,
for the same list traversal example, TM models often have
the following code snippet:



typedef struct Node_rec Node;

struct Node_rec {
Node *next;
Elem elem;

};

/* search a list in shared memory */
list *list_search(Elem elem,

Node *list) {
atomic {
while (NULL != list) {

if (elem == list->elem) {
return list;

}
list = list->next;

}
}
return NULL;

}

The above list traversal code (which accesses a shared
list) must be included in an atomic construct. Failure to put
code that access the shared data into an atomic construct
can result in data race bugs.

In contrast, Maotai 3.0 is always data-race free. Sub-
optimal programming only compromises performance by
holding views longer than necessary, but does not cause data
races in Maotai 3.0. Violation of safe view accesses can be
detected by the system. Therefore, Maotai 3.0 is safer than
TM models.

While TM does not suffer from deadlocks, Maotai 3.0 can
avoid deadlocks by using the dead-lock free mode.

IV. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we compare the performance of Maotai 3.0
with Maotai 2.0 [5] and the software transactional memory
system TL-2 version 0.9.6 [3]. Our benchmark applications
include Mergesort, Raytrace, Barnes-Hut, Parallel Neural
Network (PNN), Binary-tree (BT), Linked-List (LL) and
Travelling Salesman Problem (TSP), representing different
classes of applications. The experiments are carried out on a
Dell PowerEdge R905 server with four AMD Opteron 8380
quad-core processors running at 800MHz and 16GB DDR2
memory. Linux kernel 2.6.31 and the compiler gcc-4.4 are
used during benchmarking.

All programs are compiled with the optimization flag “-
O2”. In each case, speedup is measured against the serial im-
plementation of the benchmark algorithm. The elapsed time
calculated in each case includes initialization and finalization
costs. However, runtime of functions that are irrelevant to
the original application, such as generation of random input
sequences and result-verification, are excluded.

The experimental results are illustrated with speedup
curves. For each application, we give the speedup curves
using Maotai 2.0, Maotai 3.0 and TL-2. In the discussion
below, N refers to the number of processes.

To ensure fair comparison, the same serial implementation
of each benchmark application is used as a baseline for
calculating speedups of all parallel programming platforms.

Each run is repeated for 10 times and the geometric mean
is used.

A. Maotai 3.0 outperforms TL-2 in high-contention cases
TSP, LL and BT

The Travelling-Salesman Problem (TSP) algorithm [10]
uses the branch-and-bound depth-limited search approach
to identify the shortest path solution. The 33-city case
ftv33.atsp from TSPLIB95 [11] is used.

In this algorithm, the priority queue (storing partially-
evaluated tours) is the shared object. First, the master process
pushes the root tour into the priority. Then, in a loop, each
process pops a tour. If the tour is small, it will be evaluated
serially; otherwise, sub-tours will be created and pushed into
the priority queue.

In the TL-2 implementation, the shared priority queue is
pushed and popped by transactions. High contention of the
priority queue results in the poor speedup of 7.03 in TL-2,
as shown in Figure 3.

In both Maotai 2.0 and 3.0 implementations, the priority
queue is allocated as a view. The speedup of Maotai 3.0 is
12.92, which is 84% better than the TL-2 implementation, as
shown in Figure 3. However, Maotai 3.0 is only 3% slower
than Maotai 2.0, which has a speedup of 13.28. This small
overhead can be attributed to the automatic detection of view
accesses.
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Figure 3. Speedup of TSP

Linked-list (LL) inserts nodes in an ascending-ordered
singly-linked list, and deletes the nodes afterwards.

In both Maotai implementations, the entire linked-list is
allocated as a SWV, while in the TL-2 implementation,
natually each insertion/deletion is put into a transaction. Size
of the linked-list is set to 4096.

At N = 16, speedup of Maotai 3.0 is 13.59, which is
26% better than TL-2 (10.79) as shown in Figure 4. Maotai
3.0 is only 4% slower than Maotai 2.0.

Binary Tree (BT) constructs a binary tree in parallel and
uses a task queue for load balancing. When a node is
explored, a small amount of dummy work is done, then
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based on the id of the node, it works out whether the
node has a left child and/or right child. The left child
id is curr.id ∗ 2 and right child id is curr.id ∗ 2 + 1.
Left children are always evaluated immediately and right
children are pushed into the task queue for future evaluation.
Idle processes pop unexplored nodes from the task queue,
until the entire tree is explored. In Maotai 2.0 and 3.0
implementations, the task queue is allocated as a SWV,
whereas in the TL-2 implementation, the task queue is
accessed by short transactions. The depth of the tree is set
to 21.
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Figure 5. Speedup of BT

At N = 16, speedup of Maotai 3.0 is 35% better than TL-
2 as shown in Figure 5. This is another case that lock-based
implementations performs better than transactional memory.
Again, speedup of Maotai 3.0 is only 3% worst than Maotai
2.0.

The above applications show that TL-2 is inferior to
Maotai 3.0 in terms of performance. The slight performance
drop of Maotai 3.0 against Maotai 2.0 in the above applica-
tions can be attributed to the automatic detection overhead
described in Section II-D, as these applications have ten
thousands of automatic view acquisitions throughout their
executions.

B. PNN - multiple iteration algorithm updating a shared
array

Parallel Neural Network (PNN) [12, 13] trains a back-
propagation neural network in parallel using a training data
set. In this experiment, the size of neural network is set to
9 ∗ 40 ∗ 1, and the number of epochs is set to 400.
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Figure 6. Speedup of PNN

At N = 16, speedup of Maotai 3.0 is 50% better than
TL-2 as shown in Figure 6. In TL-2, there is a shared array
with size of 4800, which all processes need to increment
each element in this array at the end of each iteration. A
short transaction would need to increment each element.
This arrangement results in millions of transactions. Since
the overhead of the transaction itself (start and commit)
is not negligible, the sheer number of transactions has
unnecessarily compromised the performance of TL-2. It is
not possible to simply cover the entire array incrementation
with a single transaction, because if one element aborts, the
entire array operation will be aborted and redone, which
would make performance worse.

However in Maotai 2.0 and 3.0, the entire array is
allocated as a single-writer view (SWV), which removes
unnecessary overheads from the TL-2 implementation and
does not complicate the programmability since there is only
one lock in the application and thus no deadlock issue in
this case. As a result, there are only 25000 view acquires.
At n = 16, speedup of Maotai 3.0 is only 4% slower than
Maotai 2.0.

C. Barnes-Hut, Raytrace and Mergesort - low to moderate
contention cases shows very little overhead in Maotai 3.0
automatic view access detection

Barnes-Hut [14] is a multiple-iteration algorithm where in
each iteration, the master process constructs an octree for all
particles in the model space based on their current location
and mass, then the force acting on each particle is calculated
using the octree, and based on the force, acceleration,
velocity and position of the particle for the next iteration is
also calculated. In our experiment, the number of bodies is



set to 32768 and the number of iterations is set to 160. Due
to the complexity of parallelizing the octree construction
and its relatively small share of the workload, the octree
construction is not parallelized. However, the workload of
force calculation on each particle is unpredictable; therefore
a work queue is implemented for load balancing. In the TL-2
implementation, accessing the work queue (i.e. incrementing
the index) is handled by transactions; therefore Barnes-Hut
is a short transaction case. In Maotai 3.0, the work queue
index is implemented as a SWV.

Raytrace [14] is an embarrassingly-parallel case with
uneven workload, so a task queue is used for load balancing
(a row of pixels is a unit). The input file car.env is used, and
anti-aliasing level is set to 400.

The Mergesort algorithm sorts a 1,000,000,000-element
array. The Maotai 3.0 implementation comes from [5], and
the TL-2 implementation is derived from the Pthreads imple-
mentation [5]. This is a barrier-based case, and transactions
are not needed in the TL-2 implementation.
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Figure 7. Speedup of Barnes-Hut
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Figure 8. Speedup of Raytrace

In Barnes-Hut (Figure 7), Raytrace (Figure 8) and Merge-
sort (Figure 9), speedup of Maotai 2.0, Maotai 3.0 and TL-2
are nearly identical, except at n = 16, TL-2 is 2% worse
than Maotai 2.0 and Maotai 3.0 in Raytrace. (Figure 9).
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Figure 9. Speedup of Mergesort

The same performance of Maotai 3.0 and 2.0 demonstrates
the extra overhead of automatic detection of view access in
Maotai 3.0 is relatively trivial when the view acquisition is
not frequent.

V. RELATED WORK

A. Colorama

Colorama is a data-centric shared memory model [8]. Like
VOPP, shared objects are explicitly defined as “colours”, as
opposed to views in VOPP, and multiple blocks of share data
can be allocated with the same colour in a similar fashion
to the VOPP model. Under the colorama scheme, access to
data owned by colours is also automatically acquired and
released:

• Colour is acquired when its memory is first accessed.
• Colour is released when control leaves the scope of the

colour acquisition.
The automatic detection of view access in Maotai 3.0 is

similar to this model, but our scope of view acquisition
is defined differently from the scope of colours. Also our
automatic detection is implemented at run time with mem-
ory protection, while Colorama implements the automatic
detection with compiler support.

B. Java S-DCS and Deterministic Parallel Java

Java S-DCS [15] and Deterministic Parallel Java
(DPJ) [16, 17] are data-centric shared-memory models aim-
ing at ensuring determinism in parallel codes.

Both models work by determining at compile-time
whether it is possible for threads to have conflicting shared
data access. If the compiler is sure that it is impossible to
have conflicting data access between two threads, then these
threads are allowed to run in parallel; otherwise, they will
be run sequentially.

Both models let programmers define regions within a
class, and each region in the object must be accessed atom-
ically. DPJ allows recursive region subdivision using the
region path list system, and method headers declares which



regions it will read from or write to. This extra information
helps the compiler to determine potential access conflicts
between two threads, and thus allows more concurrency.

In cases like list/tree traversal, where access to the next
node depends on result of current node (only known at
runtime) and access pattern cannot be decided at compile
time, execution will fall back to sequential access and
performance will be affected. Since this approach depends
on compiler support, complex, fine-grained applications like
list traversal may not be fully parallelized.

VI. CONCLUSIONS AND FUTURE WORK

The performance evaluation between Maotai 3.0 and TL-2
0.9.6 demonstrates that both performance and programma-
bility of Maotai 3.0 surpasses TM systems. Comparison
between Maotai 3.0 and Maotai 2.0 (which does not have
automatic detection of view access) demonstrates that in our
applications, automatic detection overhead is relatively low.
Even in high-contention cases such as TSP, LL, BT and
PNN, performance penalty is under 4%.

In addition, Maotai 3.0 is safer than TM systems because
the data-centric nature of Maotai 3.0 ensures that it is data
race free. Though the automatic detection scheme does not
guarantee that there is no deadlock, deadlock can be avoided
by using the VOPP sessions with deadlock-free mode offered
in Maotai 3.0.

To address the deadlock problem, we are also investigating
the View-Oriented Transactional Memory (VOTM) scheme,
where deadlock-prone shared data are placed in a Transac-
tional Memory View (TMV). Acquiring a TMV will begin a
transaction and releasing the TMV will end the transaction.
As mentioned earlier in this paper, the first access of view
memory (include TMV) will acquire the view and leaving
the scope of the view acquisition will release the view (end
the transaction in case of TMV). Conflicting data access
will result in aborting of one or more transactions, and they
will be restarted at the location where the TMV is acquired.
Here we only put deadlock-prone data into transactional
memory, which is explicitly defined, whereas in traditional
TM, the entire shared memory is transactional and requires
programmers to explicitly mark sections that accesses shared
memory data as atomic sections. In this way, the data-centric
philosophy can be preserved in Maotai 3.0, while enjoying
the deadlock-free advantage of TM.

Moreover, though the current automatic detection system
has small runtime overheads, the applications with fine-
grained, frequent view accesses will not scale easily. To
eliminate the runtime overheads, we are investigating a high-
level language for VOPP, that offers view management,
garbage collection and safe pointer manipulation, so that
data race can be partially detected at compile time, reducing
the runtime overheads in the current Maotai 3.0 system.
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