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Abstract

Based on time, processor, and data selection techniques,
a group of Weak Sequential Consistency models have

been proposed to improve the performance of Sequential
Consistency for Distributed Shared Memory. These models

can guarantee Sequential Consistency for data-race-free

programs that are properly labelled. This paper reviews
and discusses these models in terms of their use of the

selection techniques. Their programmer interfaces are also
discussed and compared. Among them the View-based

Consistency model is recognized as the model that can offer
the maximum performance advantage among the Weak

Sequential Consistency models. An implementation of the

View-based Consistency model has been given. Finally this
paper suggests future directions of implementation effort

for Distributed Shared Memory.
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1 Introduction

A Distributed Shared Memory (DSM) system provides ap-
plication programmers the illusion of shared memory on
top of message-passing distributed systems, which facili-
tates the task of parallel programming in distributed sys-
tems. Distributed Shared Memory has become an active
area of research in parallel and distributed computing with
the goals of making DSM systems more convenient to pro-
gram and more efficient to implement [15, 5, 4, 2, 18].

The consistency model of a DSM system specifies the or-
dering constraints on concurrent memory accesses by multi-
ple processors, and hence has fundamental impact on DSM
systems’ programming convenience and implementation ef-
ficiency [16]. The Sequential Consistency (SC) model [14]
has been recognized as the most natural and user-friendly
DSM consistency model. The SC model guarantees that
the result of any execution is the same as if the operations

of all processors were executed in some global sequential

order, and the operations of each individual processor ap-
pear in this sequence in the order specified by its own pro-

gram. This means that in a SC-based DSM system, memory
accesses from all processors may be interleaved in any se-
quential order that is consistent with each processor’s mem-
ory access order, and the memory access orders observed by
all processors are the same. One way to strictly implement
the SC model is to ensure all memory updates be totally or-
dered and memory updates generated and executed at one
processor be propagated to and executed at other proces-
sors instantaneously. This implementation is correct but it
suffers from serious performance problems [19].

In practice, not all parallel applications require each pro-
cessor to see all memory updates made by other processors,
let alone to see them in order. Many parallel applications
regulate their accesses to shared data by synchronization,
so not all valid interleavings of their memory accesses are
relevant to their real executions. Therefore, it is not neces-
sary for the DSM system to force a processor to propagate
all its updates to every other processor (with a copy of the
shared data) at every memory update time. Under certain
conditions, the DSM system can select the time, the proces-

sor, and the data for making shared memory updates public



to improve the performance while still appearing to be se-
quentially consistent [18]. For example, consider a DSM
system with four processors ��� , ��� , ��� , and ��� , where ��� ,
��� , and ��� share a data object 	 , and ��� and ��� share a data
object 
 , as shown in Fig. 1.
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Figure 1: A scenario of a DSM program

Suppose all memory accesses to the shared data objects 	
and 
 are serialized among competing processors by means
of synchronization operations to avoid data races. Under
these circumstances, the following three basic techniques
can be used: (1) Time selection: Updates on a shared data
object by one processor are made visible to the public only
at the time when the data object is to be read by other pro-
cessors. For example, updates on 	 by � � may be propa-
gated outward only at the time when either � � or � � is about
to read 	 . (2) Processor selection: Updates on a shared
data object are propagated from one processor to only one
other processor which is the next one in sequence to read
the shared data object. For example, updates on 	 by � �
may be propagated to only ��� (but not to ��� ) if ��� is the
next one in sequence to read 	 . (3) Data selection: Proces-
sors propagate to each other only these shared data objects

which are really shared among them. For example, ��� , ��� ,
and ��� may propagate to each other only data object 	 (not

 ), and � � and � � propagate to each other only data object

 (not 	 ).

To improve the performance of the strict SC model, a
number of Weak Sequential Consistency (WSC) models
have been proposed [7, 9, 13, 3, 12], which perform one or
more of the above three selection techniques. WSC mod-
els can be also called conditional Sequential Consistency
models, which can guarantee Sequential Consistency for
some class of programs that satisfy the conditions imposed
by the models. These models take advantage of the syn-
chronizations in data-race-free programs and relax the con-
straints on update propagation and execution. That means,
updates generated and executed by a processor may not be
propagated to and executed at other processors immediately.
Most WSC models can guarantee Sequential Consistency
for data-race-free programs that are properly labelled [7]
(i.e., explicit primitives, provided by the system, should be

used for synchronization in the programs).

In this paper we demonstrate the above three selections
can help improve the performance of the WSC models. Pre-
vious papers [16, 1] have discussed consistency models, but
none of them analyzed the complete set of WSC models in
terms of the three selection techniques. The rest of this pa-
per is organized as follows. Section 2 describes different
WSC models in terms of the three selection techniques and
the programmer interface. Section 3 discusses the differ-
ences and relationships among the WSC models. Section 4
gives one implementation of the View-based Consistency
model. Finally Section 5 concludes the paper with future
implementation effort on DSM.

2 WSC models

In the following sections we evaluate the WSC models in
terms of the three selections and the programmer interface.

2.1 Weak Consistency

The Weak Consistency (WC) model [7], proposed in 1986,
was the first WSC model. Rather than requiring an update
to be propagated to and executed at other processors imme-
diately, WC requires that all previously-generated updates
be propagated to and executed at all processors before a
synchronization primitive is allowed to be executed. Thus
propagation of updates can be postponed until a synchro-
nization primitive is to be executed.

WC can achieve time selection by propagating updates
to other processors only at synchronization time, rather than
at every update time. With time selection, updates can be
accumulated and only the final results are propagated in
batches at synchronization time. In this way, the number
of messages in WC implementations can be greatly reduced
compared to that in strict SC implementations.

WC requires programmers to use explicit primitives,
such as acquire and release, for synchronization. No data
race on ordinary data objects is allowed in the program. If
a program meets these requirements, WC can guarantee Se-
quential Consistency for it.

2.2 Eager Release Consistency

The Eager Release Consistency (ERC) model [9] improves
WC by removing the update propagation at acquire time. It



requires that all previously-generated updates must be prop-
agated to and executed at all processors before a release is
allowed to be executed. So update propagation can be post-
poned until a release is to be executed.

ERC takes time selection one step further than the
WC model by distinguishing two different synchronization
primitives: acquire and release, which are the entry and
exit of a critical region respectively. ERC requires that up-
dates be propagated to other processors only at release time.
In other words, ERC is more time-selective than the WC
model by propagating updates only at the exit of a critical
region, instead of at both the entry and exit of a critical re-
gion as in the WC model, thus further reducing the number
of messages in the system.

ERC has the same programmer interface as WC, though
it removes update propagation at acquire time. It can guar-
antee Sequential Consistency for data-race-free programs
that are properly labelled. A formal proof of this conclu-
sion is provided in reference [9].

2.3 Lazy Release Consistency

The Lazy Release Consistency (LRC) model [13] does not
require the update propagation at release time. It postpones
the update propagation until a processor calls an acquire, at
which time it knows which processor is the next one to need
the updates. So LRC requires that before any access after an
acquire is allowed to be executed, all previously-generated
updates must be propagated to and executed at the proces-
sor executing the acquire. The Lazy Release Consistency
(LRC) model [13] improves the ERC model by performing
both time selection and processor selection.

LRC can achieve time selection similar to ERC, except
the update propagation is further postponed until another
processor has successfully executed an acquire.

LRC can achieve processor selection by postponing the
update propagation until acquire time. At successful ac-

quires, the DSM system is able to know precisely which
processor is the next one to access the shared data objects,
so updates can be propagated only to that particular pro-
cessor (or no propagation at all if the next processor is the
current processor). By sending updates only to the proces-
sor that has just entered a critical region, more messages can
be reduced in the LRC model.

LRC has the same programmer interface as WC and
ERC. It can guarantee Sequential Consistency for data-race-
free programs that are properly labelled.

2.4 Entry Consistency

The Entry Consistency (EC) model [3] tried to remove the
propagation of useless updates in LRC by requiring the pro-
grammer to annotate association between ordinary data ob-
jects and synchronization data objects (e.g. locks). When
a processor acquires a synchronization data object, only
the updates of the data objects that are associated with
the synchronization data object are propagated to the pro-
cessor. More precisely we say, EC requires that before
any access after an acquire is allowed to be executed, all
previously-generated updates of data objects that are asso-
ciated with the corresponding synchronization data object,
must be propagated to and executed at the processor execut-
ing the acquire.

EC achieves the same time selection and processor selec-
tion as LRC, since updates are propagated only to the next
processor calling an acquire.

EC achieves data selection by only propagating updates
of data objects that are associated with a synchronization
data object. The association, provided by the programmer,
helps the EC model remove the propagation of some up-
dates useless to a processor. With additional data selection,
EC can be more efficient than LRC.

In addition to requiring a program to be data-race free
and properly labelled, EC requires the programmer to an-
notate the association between ordinary data objects and
synchronization data objects in the program. If the asso-
ciation is correct, EC can guarantee Sequential Consistency
for data-race-free programs; otherwise, Sequential Consis-
tency is not guaranteed. The annotation of the association
is normally regarded as an extra burden on the programmer.

2.5 Scope Consistency

The Scope Consistency (ScC) model [12] is very similar to
EC, except it can partially automate the association between
ordinary data objects and synchronization data objects by
introducing the concept of consistency scope. ScC requires
that before any access after an acquire is allowed to be exe-
cuted, all previously-generated updates of data objects that
belong to the corresponding scope, must be propagated to
and executed by the processor executing the acquire.

Like EC, ScC only propagates the updates of data objects
that are in the current consistency scope. The difference
is that a consistency scope can automatically establish the
association between critical regions and data objects. For



non-critical regions, however, scopes have to be explicitly
annotated by the programmer.

ScC achieves the same time selection, processor selec-
tion and data selection as EC. So it can offer the same per-
formance advantages as EC if the scopes are well detected
or annotated in the program.

ScC improves the programmer interface of EC by requir-
ing programmers to associate scopes with code sections, in-
stead of data. For critical regions, scopes can be automat-
ically associated; but the programmer has to annotate the
scopes explicitly for non-critical regions. If the annotation
is not correct, ScC can not guarantee Sequential Consis-
tency for the program. ScC also requires the program to
be data-race free and properly labelled.

2.6 View-based Consistency

The View-based Consistency (VC) model [11] is proposed
to achieve data selection transparently without programmer
annotation. A view is a set of ordinary data objects that
a processor has the right to access in a data-race-free pro-
gram. A processor’s view changes when it moves from one
region to another by calling acquire and release. VC re-
quires that before a processor is allowed to enter a critical
region or a non-critical region, all previously-generated up-
dates of data objects that belong to the corresponding view,
must be propagated to and executed at the processor.

To selectively update data objects, VC uses view, while
EC uses guarded shared data ��� and ScC scope. However,
the view in VC is different from ��� in EC and the scope in
ScC. Both ��� and scope are static and fixed with a partic-
ular synchronization data object or a critical region. Even
if some data objects are not accessed by a processor in a
critical region, they are updated simply because they are as-
sociated with the lock or the critical region.

The view in VC is dynamic and may be different from
region to region. Even for the regions protected by the same
lock, the views in them are different and depend on the data
objects actually accessed by the processor in the regions.

VC achieves the same time selection and processor se-
lection as LRC. It can be more selective than EC and ScC
in terms of data selection.

VC has the same programmer interface as LRC, ERC,
and WC. It can guarantee Sequential Consistency for data-
race-free programs that are properly labelled. To achieve
data selection transparently, VC relies on techniques for au-
tomatic view detection [11].

3 Discussion

From the history of WSC models we know that constraints
on update propagation and execution have become more
and more relaxed. This relaxation allows the DSM systems
to perform time, processor, and data selections. Table 1
gives a summary of WSC models in terms of the three
selection techniques.

Model Time Sel. Proc. Sel. Data Sel.

SC No No No

WC Sync No No

ERC Release No No

LRC Acquire Next proc. No

EC Acquire Next proc. Lock-data assoc.
(programmer annot.)

ScC Acquire Next proc. Scope-data assoc.
(programmer annot.)

VC Acquire Next proc. View-data assoc.
(auto detection)

Table 1: Selection techniques used in existing consistency
models

From the discussion in previous sections we also know
that all existing WSC models achieve time/processor/data
selection by requiring programmers to annotate the pro-
grams manually so that time/processor/data selection can
be combined with synchronization primitives. For example,
the ERC model requires programs to be properly labelled
by system-provided synchronization primitives, so that the
DSM system is explicitly notified of the entry and exit of a
critical region and can thereby select the exit time to prop-
agate updates. The EC model, furthermore, requires the
programmer to associate synchronization data objects ex-
plicitly with ordinary data objects to achieve data selection.
The ScC model made one step toward (partially) transpar-
ent data selection by taking advantage of the consistency
scopes implicitly defined by synchronization primitives, but
programmers may still have to define additional consistency
scopes explicitly in programs in order to guarantee Sequen-
tial Consistency. We should be very cautious of the pro-
grammer annotation which may impose an extra burden on
programmers and increase the complexity of parallel pro-
gramming.

We distinguish two types of programmers’ annotations:
one is the synchronization annotations which are required



by both the correctness of parallel programs (to avoid data
races) and the correctness of memory consistency; and the
other is the annotations which are required only by the
correctness of memory consistency. For the first type of
annotations, such as the acquire and release synchroniza-
tion primitives in the ERC, LRC, EC and ScC models,
the DSM system can take advantage of them to achieve
time/processor selection without imposing an additional
burden on programmers. However, for the second type of
annotations, such as the association between synchroniza-
tion data objects and ordinary data objects for data selection
in the EC model, and the additional consistency scopes in
the ScC model, they are truly an extra burden to program-
mers and increase the complexity of parallel programming.
They should be replaced by automatic associations via run-
time detection (and/or compile-time analysis).

Among all these WSC models, only VC can achieve data
selection without imposing any extra burden on the pro-
grammer. In an ideal implementation, where views can be
accurately detected, VC can achieve the maximum data se-
lection. In another word, VC achieves the maximum relax-
ation of constraints on update propagation and execution for
data-race-free programs. So VC can be a reference model
where other WSC models can know their distance from the
ideal relaxation of constraints.

Based on the above analysis, the VC model appears to be
a generic and appropriate framework for future DSM imple-
mentation. Since the VC model incorporates the features of
the previous WSC models (shown in Table 1), the previous
WSC models can be considered as limited versions of the
VC implementation. As a consequence it would appear that
future implementation of DSM would best be devoted to
optimizing data selection in the VC model.

4 Implementation of VC

There are two technical issues in the implementation of VC.
One is view detection, and the other is view transition. View
detection means that before a processor enters a new region
we should find out all the data objects in its new view. View
transition means that when a processor’s view changes we
should update all the data objects of its new view. Any im-
plementation of the VC model should guarantee that before
a processor enters a new region, view detection and view
transition are achieved correctly.

We have implemented the VC model in the framework

of TreadMarks [2], which is a page-based DSM system. In
our implementation of the VC model, we regard a page as
the basic unit of data objects. Thus a view in our implemen-
tation consists of pages.

4.1 View detection

View detection is implemented at run time. In view detec-
tion, if a page is not modified it is not necessary to record
it in a view, because it has no change and thus does not
need consistency maintenance. Therefore, only the modi-
fied pages are recorded in a view in view detection.

To detect modified pages in view detection, our imple-
mentation takes advantage of the following two existing
mechanisms needed by other schemes in the DSM system:

1. When a write access is performed on an invalidated
page, a page fault will occur. The page fault handler in
the DSM system can be extended to record the faulty
page’s identifier in the corresponding view, as well as
fetching an updated copy of the faulty page from an-
other processor.

2. When a write access is performed on a write-protected
page, a protection violation interrupt will occur. The
interrupt handler in the DSM system can be extended
to record the modified page’s identifier in the corre-
sponding view, as well as making a twin of the ac-
cessed page in the multiple-writer scheme or obtaining
the ownership of the accessed page in the single-writer
scheme [6].

Because the above two mechanisms have already been pro-
vided by the underlying DSM system, there is little extra
overhead for recording the identifiers of modified pages.
However, if a page is already writable before a new view
is entered, that page will not be detected and recorded in
the new view if it will be modified in the view. To detect all
modified pages of a view, we make all writable pages write-
protected (read-only) before a new view is entered. This
is the additional overhead required for view detection. Ac-
cording to our experimental results this additional overhead
is trivial [11].

The CRVs detected in our implementation are complete
and accurate since a processor entering a critical region has
exclusive access to those pages modified by other proces-
sors in the same critical region. Unfortunately, an NRV de-
tected in our implementation consists of all pages modified
by other processors in non-critical regions. That means a



processor entering a non-critical region may not have ex-
clusive access to some pages in its NRV. Thus a detected
NRV may be bigger than the real one. This inaccuracy only
affects the performance, not the correctness of our imple-
mentation.

4.2 View transition

Before a new view is entered view transition needs to be
done. View transition can be either based on the invalida-
tion protocol, which only invalidates those modified pages
in the new view, or based on the update protocol, which
only updates those modified pages in the new view. If the
invalidation protocol is used in view transition, the pages
that are not in the new view but are modified stay valid until
some later view transition needs to invalidate them.

The update protocol is suitable for VC, as is the invalida-
tion protocol for LRC, because VC has done data selection
through the use of views and thus the pages in the new view
are most likely to be accessed in the corresponding critical
region. Therefore updating them straightforwardly helps to
reduce the number of messages requesting updates and thus
is more efficient than the invalidation protocol. [18]

However, since the detected NRVs are not accurate we
adopt a hybrid protocol, which incorporates both the in-
validation protocol and the update protocol, in our imple-
mentation. The hybrid protocol is similar to the SLEUP
protocol[18]. It uses the update protocol for the modified
pages in CRVs, but the invalidation protocol for the modi-
fied pages in NRVs.

Since our implementation of VC is based on Tread-
Marks, we have to adapt to the multiple-writer scheme at the
price of false-sharing effect. There are two kinds of false-
sharing effect: write/read and write/write. Write/read false-
sharing effect occurs when one processor modifies a shared
data object that lies in the same memory consistency unit
(e.g. a page) as another shared data object, while another
processor reads the other shared data object. Write/write
false-sharing effect occurs when one processor modifies a
shared data object that lies in the same memory consistency
unit (e.g. a page) as another shared data object, while an-
other processor writes to the other shared data object. In our
implementation we can completely remove the write/read
false-sharing effect. However, to work with the multiple-
writer scheme properly, we have to tolerate the write/write
false-sharing effect. Thus the write/write false-sharing ef-
fect has not been removed in our implementation.

5 Conclusions and future directions

WSC models have relaxed the constraints on update propa-
gation and execution for data-race-free programs that are
properly labelled, but they can still guarantee Sequential
Consistency for those programs. We have analyzed each
of them in terms of the three selections and the programmer
interface. From the discussion we know that more and more
selections are performed in WSC models (as one reads top-
down in Table 1), but data selection is performed in EC and
ScC at the price of a complex programmer interface which
imposes an extra burden on the programmer. The VC model
has been proposed to remove such a burden by means of au-
tomatic view detection. Besides time selection and proces-
sor selection, VC tries to achieve the maximum data selec-
tion without imposing any extra burden on the programmer.
It can serve as a reference model for other WSC models
and as a target model for DSM implementation, because it
is the model that has the maximum performance advantage
among the WSC models.

We believe that future implementation efforts in DSM
will be focused on how to achieve the performance ad-
vantage of VC with the least overhead. Further research
should be carried out under the framework of the VC
model. (1) Accurate detection of NRVs. Run-time and
compile-time techniques need to be developed for the detec-
tion. These techniques are different from previous work on
compile-time optimization, e.g.[8], or run-time optimiza-
tion, e.g.[17], which work at the level of update propaga-
tion protocol in LRC, instead of the level of a consistency
model. (2) Efficient view representation. The current im-
plementation uses a page as the basic unit of a view. A page
is too coarse for the representation of views and may re-
sult in propagation of useless updates on the same page. (3)
Reduction of the write/write false sharing. A new update
representation scheme, rather than the single-writer and the
multiple-writer schemes, is needed to reduce the write/write
false sharing.
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