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Abstract

Traditional parallel programming styles have many prob-
lems which hinder the development of parallel applications.
The message passing style can be too complex for many
programmers. While shared memory based parallel
programming is relatively easy, it requires programmers
to guarantee there is no data race in programs by using
mutually exclusive locks. Data race conditions are gener-
ally difficult to debug and difficult to prevent as well. The
View-Oriented Parallel Programming (VOPP) is a novel
shared-memory-based programming style. It removes the
burden of guaranteeing data race free from the program-
mers. With the VOPP approach, shared data objects in a
parallel program are divided into views according to the
memory access pattern of the parallel algorithm. Data
race is not an issue in VOPP, since mutual exclusion is
automatically done by the underlying system when a view
is accessed. The programmer only needs to synchronize
the access of views using synchronization primitives like
barriers. By removing data races of view access, VOPP
makes it easier to code and less difficult to debug programs.
It provides potential performance advantages on multi-core
systems as well as cluster computers. It will also provide
useful information for efficient implementation of transac-
tional memory.

Key Words: View-Oriented Parallel Programming, Clus-
ter computer, Multi-core system, Message Passing Inter-
face, Parallel Computing, Data Race, Deadlock, Transac-
tional Memory

1 Introduction

With the advent of Sun’s UltraSPARC T1, we are moving
towards a new age of parallel processing. UltraSPARC T1
(also known as Niagara) is a multi-core system which con-
sists of 8 cores and can support running up to 32 parallel
processes/threads. That means, inside the single chip, there
can be 32 processes running in parallel. With conservative

estimation, we expect hundreds of cores (processors) built
into a single chip. Therefore, with multi-core technology,
we effectively have a powerful parallel computer built in-
side one chip.

What will happen in the near future is that every desktop
computer will be a parallel computer with lots of comput-
ing power. The problem for us is how to utilize the power.
The task eventually falls on the shoulders of application pro-
grammers. The programmers should be able to make their
applications to run in parallel on multi-core systems. Par-
allel programming on multi-core systems is important for
utilizing the available computing power.

However, parallel programming is regarded as difficult
and error prone. Sound parallel programming methodol-
ogy is needed to ease the task of parallel programming.
Traditionally, there are two camps in parallel programming
methodologies. One is based on message passing such as
Message Passing Interface (MPI), and the other is based on
shared memory which is used for communications between
computing entities such as processes. Parallel programming
with message passing is notoriously difficult and complex,
especially when there are hundreds of processes communi-
cating with messages. Using shared memory for commu-
nications between processes is natural and straightforward
for programmers, but the following problems hinder paral-
lel programming using shared memory.

First, data race condition is difficult to debug. Data race
means there are concurrent accesses to the same memory
location and at least one of them is write access. If it hap-
pens in an execution of a parallel application, we say that
the application has a data race condition and it may not be
correctly executed due to the data race. Since a parallel
execution is normally not repeatable, it is difficult to find
the cause of a data race. Second, deadlock makes debug-
ging more complex. Deadlock is a situation where multiple
processes/threads wait for each other due to competing for
locks. To prevent data race conditions, mutually exclusive
primitives such as locks are used. Improper use of locks
can result in deadlocks. Also mutual exclusion has compli-
cated the mental model of parallel programming, since the
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programmer not only needs to consider what data to access,
but also to consider how to access them (exclusively or non-
exclusively). Third, parallel applications are normally not
portable. There is no popular standard for shared memory
based programming. Many languages and systems are pro-
posed, such as OpenMP, HPF, Linda, Pthread, and etc. To
have a standard API for shared memory based programming
similar to MPI is very important for portability of parallel
applications using shared memory. The API should be both
efficient and convenient for parallel programming on differ-
ent architectures and platforms such as SMPs, multi-core
systems, and cluster computers.

This paper will address the above issues based on
our previous novel View-Oriented Parallel Programming
(VOPP). Compared to previous work [8], the views are fur-
ther classified in this paper, the API for VOPP are refined
and enhanced, and more examples are used in this paper to
illustrate the versatile VOPP for a variety of applications.
The rest of this paper is organised as follows. Section 2 de-
scribes the key concepts and primitives for VOPP. Section 3
illustrates VOPP with a few typical examples. Section 4
compares our work with other related work. Section 5 dis-
cusses the advantages of VOPP for parallel programming on
various parallel computer architectures. Finally, our future
work on VOPP is suggested in Section 6.

2 View-Oriented Parallel Program-
ming (VOPP)

VOPP is a novel parallel programming style [6] based on
the concept of view.

Definition 1 Definition of View

• A view is a set of memory units (bytes or pages) in
shared memory. SupposeM is the set of total units in
shared memory andVi is a view, then∀Vi, Vi ⊆ M .

• Views do not overlap with each other. Suppose there
are two different viewsVi and Vj , i 6= j, then
∀Vi∀Vj , Vi ∩ Vj = φ

Definition 2 Properties of View

• Views are created and destroyed dynamically.

• Each view has a unique view identifier.

• Before a view is accessed (read or written), it must be
acquired (with view primitives); after the access of a
view, it must be released (with view primitives).

• Multiple views can be merged together when neces-
sary.

So far we have identified the following classes of views.

Definition 3 Classes of Views

• Single-Writer view (SWV): only one process is al-
lowed to acquire the view for write purpose at any par-
ticular time; multiple processes can acquire the view
for read-only purpose at the same time. This class con-
tains the following two special subclasses:

– Consumable View (CV): This class of views is
similar to a pipe. A writer (producer) produces
the view while multiple readers (consumers) con-
sumes the view. The producer and the consumers
are synchronized with each other. Before a view
is produced, the consumers should wait to con-
sume the view; before the view is consumed by
all consumers, the producer should wait to pro-
duce another version of the view.

– Atomic View (AV): This class of views is ac-
cessed with atomic operations such asread view
andwrite view.

• Multiple-Writer view (MWV): multiple processes can
acquire the view for write purpose at the same time but
they must write on different locations of the view.

• Automatically Detected View (ADV): The memory
units of the view are not defined initially, but are au-
tomatically detected by the system along the course of
parallel execution.

Definition 4 Consistency of View

• When a view is acquired by a processPi, all previous
write accesses to the view mustbe performed with re-
spect toPi according to their causal order.

• After a view is acquired by a processPi, Pi’s local
copy of the view will not be affected by other processes
until it acquires the view next time.

A write access to a unit of a view is said tobe performed
with respect toprocessPi at a time point when a subsequent
read access to that unit byPi returns the value set by the
write access. The above consistency is in conformity with
the View-based Consistency (VC) proposed in [4].

There are a number of requirements for VOPP program-
mers.

• The programmer should use a number of views to store
data objects according to the data sharing pattern of the
parallel algorithm.

• Each view should consist of data objects that are al-
ways processed as an atomic set in the program.
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• When any data object of a view is accessed, view prim-
itives must be used (see below).

The following view primitives are needed to manipulate
and access views:

• int alloc view(int *viewid, int size, int flag): create
the specified view by allocating a memory space with
sizeand specifying its class withflag. The return value
indicates if there is any error or not. Ifview id is null,
the function will allocate an identifier to the view and
return the identifier as its return value.

• void *view brk(int size): extend the view with size
size, then return the pointer to the start of the extended
area.

• int free view(int viewid): destroy the specified view
and free the memory space of the view.

• void *acquireview(int viewid): acquire exclusive
write access to the specified view; the calling process
is blocked if the view is held by another process. The
address of the view is returned if the acquire is suc-
cessful.

• void releaseview(int viewid, int nr): release the spec-
ified view. If the view is consumable, the number of
consumers the producer waits isnr.

• void *acquireRview(int viewid): acquire read-only
access to the specified view; the calling process gets an
up-to-date version of the specified view. The address
of the view is returned if the acquire is successful.

• void releaseRview(int viewid): finish read-only ac-
cess to the specified view.

• int read view(int viewid, void *buf, int *size, int off-
set): atomic read operation on views.

• int write view(int viewid, void *buf, int size, int off-
set): atomic write operation on views.

• void enqueueview(int viewid): enqueue a view iden-
tifier into the system queue.

• int dequeueview(): dequeue a view identifier from the
system queue.

VOPP allows programmers to participate in performance
optimization through wise partitioning of shared data into
views. The rule of thumb for VOPP overhead is that, the
more view acquisitions, the more messages incurred in the
network or the system bus; and the larger a view is, the
more amount of data transmitted in the network at the view
acquisition and the more coarse grain of parallelism there is
possibly. The programmers will be able to finely tune the
program by reducing both the number of view acquisitions
and the size of views.

3 Examples of VOPP

In this section, we will use some examples to illustrate
VOPP. These examples use a C interface provided by
VODCA [8], a system supporting VOPP. VODCA provides
the above view primitives with a prefixVdc , though current
version of VODCA only implements a subset of those view
primitives. In addition, VODCA also provides the follow-
ing C interface.

• VDC NPROCS: the maximum number of parallel pro-
cesses supported by VODCA.

• VDC NVIEWS: the number of view identifiers avail-
able for use.

• VDC NPAGES: the number of pages in the shared
memory.

• Vdc nprocs: the actual number of parallel processes in
an execution.

• Vdc proc id: the process id, an integer ranging from0
to Vdc nprocs-1.

• void Vdcstartup(int argc, char **argv): initialise
VODCA and start remote processes.

• void Vdcexit(int status): terminate the calling process.

• void Vdcbarrier(unsigned id): block the calling pro-
cess until every other process arrives at the barrier.

The following VOPP examples are based on typical
problems in parallel programming.

3.1 Sum problem

In this problem, every process has its local array and needs
to sum up all local arrays. We create a view for the subto-
tal of each local array in every process. Finally the master
process (process 0) will sum up all subtotals.

int *local_array, a_size;
long *subtotal;

main(int argc, char **argv)
{
int i, j;
long sum=0;

initialise a_size;

Vdc_startup(argc, argv);

local_array=malloc(a_size*sizeof(int));
initialise local_array;
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Vdc_alloc_view(&Vdc_proc_id, \
sizeof(long), SWV);

subtotal=Vdc_acquire_view(Vdc_proc_id);

*subtotal = 0;
for (i=0;i<a_size;i++)

*subtotal+=local_array[i];
Vdc_release_view(Vdc_proc_id, 0);

Vdc_barrier(0);

if(Vdc_proc_id==0){
for(j=0;j<Vdc_nprocs;j++){

subtotal = Vdc_acquire_Rview(j);
sum += *subtotal;
Vdc_release_Rview(j);

}
printf("The total sum is %l\n", sum);

}

}

We may also use a multiple-writer view (MWV) to code
the above problem in the following way. An array is allo-
cated as a multiple-writer view and all processes simulta-
neously store their subtotals into their respective elements.
Finally the master process (process 0) sums up all subtotals
with the MWV.

if(Vdc_proc_id==0)
Vdc_alloc_view(&Vdc_proc_id, \

Vdc_nprocs*sizeof(long), MWV);

Vdc_barrier(0);

subtotal=Vdc_acquire_view(0);
subtotal[Vdc_proc_id] = 0;
for (i=0;i<a_size;i++)
subtotal[Vdc_proc_id]+=local_array[i];

Vdc_release_view(0, 0);

Vdc_barrier(0);

if(Vdc_proc_id==0){
subtotal = Vdc_acquire_Rview(0);
for(j=0;j<Vdc_nprocs;j++)

sum += subtotal[j];
Vdc_release_Rview(0);
printf("The total sum is %l\n", sum);

}

3.2 Producer/consumer problem

Suppose there is a piece of shared data produced by process
0 and consumed byVdc nprocsprocesses. We can use a
consumable view to contain the shared data as below.

if(Vdc_proc_id==0)
Vdc_alloc_view(&Vdc_proc_id, \

size, SWV|CV);

Vdc_barrier(0);

while(condition){
if(Vdc_proc_id==0){

vp=Vdc_acquire_view(0);
produce(vp);
Vdc_release_view(0, Vdc_nprocs);

}

vp=Vdc_acquire_Rview(0);
consume(vp);
Vdc_release_Rview(0);

}

3.3 Task queue problem

Using task queue for parallel computing is common. The
shared data in each task is regarded as a different view and
a unique identifier is allocated to the view when the task
is created. The VOPP code pieces of the program are as
below.

struct task {
char state;
char *task_data;

}

/* task producer */
struct task *t;
int vid;

vid = Vdc_alloc_view(NULL, \
sizeof(struct task), SWV);

t=Vdc_acquire_view(vid);
t->task_data=Vdc_view_brk(data_size);
create_task(t);
Vdc_release_view(vid);
Vdc_enqueue_view(vid);

/* task consumer */
struct task *t;
unsigned vid;
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vid=Vdc_dequeue_view();
t=Vdc_acquire_view(vid);
consume_task(t);
Vdc_release_view(vid);

From the above examples, we see that VOPP does not
place extra burden on programmers since the partitioning
of shared data is an implicit task in parallel programming.
VOPP just makes the task explicit by adding view primi-
tives, which renders parallel programming less error-prone
in handling shared data.

The focus of VOPP is shifted more towards data man-
agement (e.g. data partitioning and sharing), instead of mu-
tual exclusion and data race as in traditional shared memory
based parallel programming. Mutual exclusion is automati-
cally achieved by VODCA system when a process acquires
a normal view rather than MWV. Except multiple-writer
views (MWVs) and automatically detected views (ADVs)
which are for experienced parallel programmers, the mem-
ory area of a view is protected by the system so that no other
processes will be able to ”touch” the area. In this way, the
bug of ”data race” is removed.

To avoid deadlock, we are going to provide some wrap-
per functions to acquire multiple views together in the same
order. The programmers can use these wrapper functions
when they are not sure if there is a deadlock because of ac-
quiring multiple views.

4 Comparison with other related
work

The idea of combining data with mutual exclusion is not
new. There were some related work such as Entry Consis-
tency (EC) [2] and Scope Consistency (ScC) [9]. However,
their programming interfaces are very different from VOPP.

VOPP is different from the programming style of Entry
Consistency in terms of the association between data ob-
jects and views (or locks). Entry Consistency [2] requires
the programmer to associate manually data objects with
locks and barriers in programs, while the VOPP program-
mer simply creates views withalloc viewprimitive, which
is just as easy as memory allocation.

VOPP is also different from the programming style of
Scope Consistency (ScC) [9] Programs based on ScC are
extended from the traditional DSM programs, i.e., lock
primitives are normally used in those programs while scope
primitives such asopenscope are used only when re-
quired by memory consistency. Therefore, the program-
ming model provided in ScC is a mixture. The programmer
has to think of mutual exclusion when lock primitives are
used, but has to think of memory consistency when scope
primitives are used. This blended programming model sim-
ply confuses programmers. However, in contrast to the

traditional DSM programs, the focus of VOPP is shifted
towards shared data (views) rather than mutual exclusion.
Programmers only think of shared data (views) when view
primitives are used, while mutual exclusion and view con-
sistency are left to the underlying system.

VOPP is very different from MPI. From programming
point of view, VOPP is more convenient and easier for
programmers than MPI, since VOPP is still based on the
concept of shared memory (except that view primitives are
used whenever shared memory is accessed). In addition,
VOPP provides experienced programmers an opportunity to
finely-tune the performance of their programs by carefully
dividing the shared memory into views.

Since partitioning of shared data into views becomes part
of the design of a parallel algorithm in VOPP, VOPP offers
the potential to make VOPP programs perform as well as
MPI programs. The reason is that a VOPP program can be
finely tuned so that its underlying message passing behav-
ior can match that of its MPI counterpart. That is, if there
is a finely-tuned MPI program, we can make a VOPP pro-
gram whose underlying message passing behavior is similar
to that of the MPI program. The VOPP program can imi-
tate the MPI program in a way that wherever there is data
transfer between processors in the MPI program, the VOPP
program allocates a shared view for the data and uses view
acquisition to get the data. In this way, the overhead of
message passing in VOPP can be almost the same as that in
MPI program, since the cost of view acquisition in VODCA
is almost the same as that of sending and receiving a block
of data in MPI.

Though the message passing behavior of VOPP pro-
grams can be made similar to that of MPI programs, the
programming interface provided in VOPP is very much dif-
ferent from MPI. MPI programmers have to know where a
block of data is located, while location of a view is transpar-
ent to VOPP programmers. VOPP programmers only need
to worry about which view to acquire, but not the location
of data as in MPI programs.

5 Advantages of VOPP

VOPP is useful for a wide range of parallel programmers,
from novice to veteran, from traditional shared memory
programmers to MPI programmers. For novice program-
mers, a few single-writer views (SWVs) can be used for
communications between processes. Though the perfor-
mance may not be good initially, but at least the programs
can be easily made working since the programmers don’t
need to worry about the issues of mutual exclusion, data
race, and deadlock. For veteran programmers, data objects
can be carefully partitioned into more views in order to en-
able fine-grained parallelism.
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For traditional shared memory programmers, a single
multiple-writer view (MWV) can be used like the example
in Section 3.1, as long as the programmers guarantee there
is no data race when the view is accessed in parallel. If the
programmers are clear about their data partitions, automati-
cally detected views (ADVs) can be used to easily adapt the
traditional programs (e.g. TreadMarks [1] programs) into
VOPP programs.

For MPI programmers, a view can be regarded as a mes-
sage buffer with an identifier. It has transparent location and
is shared by all processes. It is identified by an identifier in-
stead of location. This essential difference of a view from
a message buffer has removed the mental burden of keep-
ing track of locations of data among processes in MPI pro-
grams. Apart from this difference, MPI programmers can
simply treat a view as a message and map any MPI program
into a VOPP program.

The philosophy behind VOPP is that independence and
isolation are better than sharing in parallel computing.
We encourage more independence/isolation than sharing in
VOPP. When there is a sharing, the programmer should be
reminded of the cost. In VOPP, every time there is a sharing
of data, a view has to be created by the programmer. Ev-
ery time a shared data object is accessed, view primitives
have to be used. In this way, sharing is discouraged and
the programmer is reminded to carefully budget the amount
of sharing. In the same line as the above philosophy, we
prefer process to thread in implementation of VOPP since
threads have lots of unnecessary sharing which expose pro-
grams to potential problems like data race and deadlock. By
using processes in implementation of VOPP, we can reduce
the sharing of data among processes to the minimal and the
sharing of data in VOPP programs can only be achieved
through views. The overhead difference between creating a
process and creating a thread has significantly been reduced
now with the techniques of light-weight process (LWP) and
copy-on-write (COW). Overall, we believe the above phi-
losophy will lead to an easy and enjoyable programming
style which is acceptable to most parallel programmers.

VOPP has already demonstrated its performance advan-
tage on cluster computers [6, 8, 5, 7, 4]. Moreover, VOPP
has potential performance advantage on SMP or multi-core
systems. Since memory address and size of a view is
known, a view can be pre-fetched into CPU cache when
a view is acquired. This information cannot be obtained in
traditional parallel programs.

Also VOPP can be efficiently implemented based on
Remote Direct Memory Access (RDMA) [10]. RDMA
provides read and write services directly to applications
and enables data to be transferred from memory of remote
computers directly into user buffers without intermediate
data copies. It also enables a kernel bypass implementa-
tion. Since views can be easily mapped to RDMA mem-

ory buffers, VOPP can be implemented efficiently based on
RDMA and thus provides a convenient interface for appli-
cations on top of complicated RDMA interface.

Additionally VOPP will have performance advantage
on systems with transactional memory. With transactional
memory, mutual exclusive mechanisms such as locks are
not needed when shared data are accessed. Access con-
flicts are detected and resolved by transactional memory.
However, with shared memory partitioned into views, we
can disable the conflict-resolving mechanism of the trans-
actional memory if the same view is not acquired by two
or more processors simultaneously. Since the conflict-
resolving mechanism is costly, disabling the mechanism
will produce performance advantage.

VOPP enables more effective debugging. Since shared
data are divided into views, debugging VOPP programs
based on views is very natural. Views can be monitored
while a program is executed. Views are the only shared
data among processes. They are easy to be tracked down
with the view primitives. In this way, degugging a parallel
program becomes simpler and more effective.

6 Future work

More applications are needed to evaluate the convenience
and performance of VOPP. Techniques for fast barriers need
to be investigated when the number of processors is very
large, e.g., the order of hundreds or thousands. An imple-
mentation of VOPP based on RDMA needs to be investi-
gated. In order to make an effective parallel programming
environment for VOPP, a view-based debugger is needed in
the near future.
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