
Virtual Aggregated Processor in Multi-core Computers

Z. Huang† A. Trotman† J. Zhang†, X. Jia† M. Nowostawski‡ N. Rountree† P. Werstein†
†Department of Computer Science

University of Otago, Dunedin, New Zealand
Email:{hzy;andrew;fei;rountree;werstein}@cs.otago.ac.nz

‡Department of Information Science
University of Otago, Dunedin, New Zealand

Email: mariusz@nowostawski.org

Abstract

Parallel computing has been in the spotlight with the advent
of multi-core computers. The popular multithreading model
does not scale very well when there are hundreds or thou-
sands of cores, since it can only help exploit coarse-grained
parallelism. There exist a lot of fine-grained parallelism
to be exploited in I/O tasks and memory accesses during
execution of a thread. Our Counter-Amdahl’s Law tells us
that it is more effective to parallelize the serial fractionof
a parallel algorithm rather than the parallelized fraction
in order to maximize the speedup. In this paper, we have
proposed a Virtual Aggregated Processor that is aiming at
speeding up execution of a thread through exploiting the
fine-grained parallelism in I/O tasks and memory accesses.
We have proposed and implemented two techniques, helper
thread and I/O specialization, to demonstrate the potential
effectiveness of the Virtual Aggregated Processor technol-
ogy.

Key Words: Multi-core, Virtual Aggregated Processor,
Counter-Amdahl’s Law, Helper Thread, I/O specialization

1 Introduction

Computer architectures and the computer industry are be-
ing transformed by the advent of multi-core (MC) technol-
ogy. According to Moore’s Law [1, 25], the number of
transistors in a single silicon die (also known as a chip)
doubles every two years, so the best evidence is that the
core count will continue to grow. At present, the most ad-
vanced general-purpose processor available, Sun Microsys-
tems Ultra-SPARC T2 [8], features eight processing cores
capable of running 64 independent threads (processes) on
a single chip, but future chips, including those from other
manufacturers like Intel and AMD, will undoubtedly in-
volve hundreds of simultaneously operating cores.

MC technology is a disruptive technology because it of-
fers massive increases in processing capacity on a single
computer. With this new technology, server farms (such as
those operated by Google, Yahoo!, and others) will con-
sume a fraction of the power and be far less costly to op-
erate. This technology might make server farms redundant
due to high-level integration of processing units on silicon
dies.

MC technology also opens new opportunities for system-
and application-level software to harness the power of mul-
tiple cores. However, to realise these opportunities, funda-
mental research issues need to be addressed [11]: how can
the application-level software utilise efficiently the avail-
able processing power? How can the system-level software
better support the parallelization of applications?

Current parallelization software such as OpenMP [2] and
MPI [3] are all based on multithreading technology, which
enables multiple threads (or processes) to work in parallel
on the same computational problem. However, for most
application software, the number of threads that can be
adopted is limited due to Amdahl’s Law [4, 10]. Though
we may use one core for each thread in the multithreading
model, we may still waste the power of hundreds of cores
that are idle. The research question for us is ”Can we use the
idle cores to speed up a thread already running on a core?”

Another problem with the multithreading model is that
it can only help exploit coarse-grained parallelism at the
thread level. Much potential fine-grained parallelism, such
as I/O tasks, is hidden from threads. The research question
for us is ”Can we exploit the fine-grained parallelism in the
sequential execution of a thread?”

To address the above research questions, we have pro-
posed a Virtual Aggregated Processor (VAP) project to ex-
amine opportunities for fine-grained, low-level parallelism
within individual applications and threads. VAP is under-
pinned by two important computer science principles: spe-
cialization is more effective than generalisation, and Am-
dahl’s Law bounds the effect of parallelism; and is sup-

ported by two important trends: the breakup of monolithic
operating systems into discrete services/devices, and there-
emergence of virtualisation. We leverage these principles
and trends in a novel manner to increase the number of tasks
that can be parallelized in a single thread and implement
these tasks in virtual devices. This will maximise the use
of available cores, thus improving processing capacity and
reducing energy consumption through more effective utili-
sation.

This paper will introduce our idea and principles behind
VAP and its preliminary research results. The rest of this
paper is organized as follows. Section 2 introduces our
Counter-Amdahl’s Law in order to emphasize the impor-
tance of parallelizing serial fraction of a parallel algorithm.
In Section 3, we propose the VAP architecture based on ex-
isting hypervisor technology such as Xen [6, 13]. In Sec-
tion 4, we present the implementation of a helper thread
on MC computers and demonstrate its preliminary perfor-
mance. Section 5 presents our I/O specialization techniques
to improve I/O tasks and demonstrate its effectiveness for
special domains such as information retrieval. Finally, our
future work is suggested in Section 6.

2 Counter-Amdahl’s Law

The efficiency of a parallel algorithm is normally measured
with its speedup relative to its sequential version. Speedup
is formally calculated with the following formula.

Definition 1 Speedup of a parallel algorithm

The speedup of a parallel algorithm is

S =
Ts

Tp

whereTp is the execution time of the parallel algorithm,
while Ts is the execution time of its sequential version.

Supposef is the fraction of the computation that is serial
in a parallel algorithm, andp is the speedup for the parallel
fraction of the algorithm. Based on the above formula, the
overall speedup of the algorithm can be expressed as:

S =
Ts

fTs + (1−f)Ts

p

=
p

1 + (p − 1)f

In 1967, computer architect Gene Amdahl argued that
the maximum speedup of a parallel algorithm is bounded
by the serial part of the algorithm [4, 10]. More formally,
the Amdahl’s Law is described below.

Definition 2 Amdahl’s Law

Supposef is the fraction of the computation that cannot be
parallelized in a parallel algorithm, andn is the number of

processors working on the concurrent parts of the algorithm.
The speedup of the algorithm is bounded by

S(n) =
n

1 + (n − 1)f

Even with an infinite number of processors (i.e.n →
∞), the maximum speedup is bounded by

S(n)n→∞ =
1

f

With Amdahl’s Law, we know that the serial fraction of a
parallel algorithm has a significant impact on the scalability
of the algorithm. If that fraction is relatively large, there will
be no speed increase for the algorithm with a given problem
size on a small number of processors. For example, suppose
f is 0.5 in an algorithm, no matter how many processors are
used, the maximum speedup of the algorithm is no more
than2.

To reduce the effect of Amdahl’s Law, we should reduce
the serial fraction of a parallel algorithm. To emphasize the
importance of parallelizing the serial fraction of an algo-
rithm, we propose the following Counter-Amdahl’s Law.

Definition 3 Counter-Amdahl’s Law
Supposef is the fraction of the computation that is serial
in a parallel algorithm, andp is the speedup for the parallel
fraction of the algorithm. Then, ifp > (1 − f)/f , which
meansp is greater than the ratio between the parallel frac-
tion and the serial fraction, it is more efficient to improve
the serial fraction rather than the parallel fraction in order
to increase the overall speedup of the algorithm.

Proof: Suppose an additional number of processors is
used to improve either the serial fraction or the parallel frac-
tion, which is accelerated bym times. Then the overall
speedup for the algorithm with the improvement on the se-
rial fraction is

S(s) =
Ts

fTs

m
+ (1−f)Ts

p

=
pm

pf + (1 − f)m

and the overall speedup for the algorithm with the improve-
ment on the parallel fraction is

S(p) =
Ts

fTs + (1−f)Ts

pm

=
pm

pmf + (1 − f)

Sincep > (1 − f)/f , then we havepf + f > 1; then
multiply m−1 on both sides, we havepf(m−1)+ f(m−
1) > m − 1; then unravel the left side, we havepfm −
pf +mf −f > m−1; then shift around the terms, we have
pmf + (1 − f) > pf + (1 − f)m; then inverse both sides,
we have1/(pf + (1 − f)m) > 1/(pmf + (1 − f)); and
finally multiply pm on both sides, we have

pm

pf + (1 − f)m
>

pm

pmf + (1 − f)

Therefore,S(s) > S(p).
From the Counter-Amdahl’s Law, we know that when

p becomes large, it is more efficient and more effective to
improve the serial fraction rather than the parallel fraction.
Whenp → ∞, S(s)p→∞ = 1/mf , which means the over-
all speedup of the algorithm can be improved aboutm times
if the serial fraction is speeded up bym times.

For example, supposef is 0.1 and p is 100 in an al-
gorithm. If its serial fraction is accelerated by 2 times
(m = 2), then the new overall speedup of the algorithm is
approximately 16.94, which is about 1.8 times of its original
speedup 9.17. This means, in this situation, if we can use
two or three additional processors to accelerate the serial
fraction by 2 times, its overall effect is much better than to
use 100 additional processors to improve the parallel frac-
tion by 2 times.

3 Virtual Aggregated Processor
(VAP)

Current parallelization software [2, 3] is based on multi-
threading technology, which enables multiple threads to
work in parallel across multiple processors. However, the
ability of multi-threading techniques to parallelize tasks is
limited because multi-threading is coarse-grained, and the
OS-level and architecture-level parallelism cannot be ex-
ploited through multi-threading. As stated in the Counter-
Amdahl’s Law, it is more efficient to improve the serial frac-
tion of an algorithm. In a sequential execution of a thread,
there is a lot of fine-grained parallelism to be exploited at
the OS and architectural level. As far as we know, there are
two approaches to parallelizing an execution of a thread.
One is to parallelize the system calls and libraries to be in-
voked by a thread. The other is to parallelize memory and
I/O accesses. The VAP project is taking both approaches to
achieve maximum possible parallelism for multi-threading
applications, in order to counter the effect of Amdahl’s Law.

Our approach for VAP is based on the important prin-
ciple that specialization, rather than generalization, isthe
most effective approach to high performance computing. A
prominent advocate of this belief is Gordon Bell, a veteran
in parallel computing from Digital Equipment Corporation
and now a Microsoft evangelist, who confirmed that spe-
cialization was the most effective approach in the history
of high performance computing [14]. Therefore, we are in-
vestigating specialized parallel algorithms and techniques
based on the specialties of both the specific VAP applica-
tions and the specific multi-core architectures.

VAP is a virtual processor comprised of multiple cores
coordinated by software. It can be used as a reconfigurable,
software-powered, specialized virtual device that can po-
tentially contain dozens of cores, as shown in Figure 1. The

novelty of VAP is that it enables multiple cores (or proces-
sors) to facilitate the execution of a single thread, while tra-
ditional operating system software focuses on how multiple
threads best share a single processor.

!!

 Hypervisor

!
Bare machine

OS

frontend

VAP

App.

backend

VAP constructors

Application-specific

parallel algorithms

Comm.

channel

VAP

device

VAP

platform

C C C C C C C

Figure 1: VAP architecture

To develop VAP virtual devices, we will leverage an-
other transformation in computing: virtualisation. While
not itself a new idea, virtualisation technology recently
developed by companies such as XenSource [6, 13] and
VMware [5] can enable multiple virtual machines to run
on a single physical computer. All major chip manufactur-
ers are supporting virtualisation in computer hardware and
this gives us the opportunity to develop efficient specialized
virtual devices, separate from OSs, via the chips hardware
support.

As shown in Figure 1, a VAP is positioned on a thin layer
of virtualization software called the hypervisor, which con-
trols access to and partitions the physical resources of the
bare machine. An application in a standard virtual machine
can access the power of a VAP via a virtual device driver
called the frontend. The frontend interacts with a VAP via
a communication channel connecting to a backend in the
VAP. The VAP software consists of VAP constructors such
as the helper thread and pipeline, which are the basic build-
ing blocks of VAP, and application-specific parallel algo-
rithms. We will develop VAP prototypes in information re-
trieval and data mining as examples of the VAP approach.
There may be different types of VAPs or different instances
of the same VAP inside a multi-core computer. Based on
the VAP platform, which consists of the VAP constructors,
the communication channel, the frontend, and the backend,
other high performance VAP products in domains such as
packet classification, network intrusion detection, and In-
ternet traffic analysis can be investigated and developed.

The VAP technology will provide both high performance
and flexibility to computer operating systems. The high
performance will result from the parallel techniques spe-
cialized for the application domain and the multi-core ar-
chitecture, while the flexibility comes from the virtualisa-
tion technology supporting VAPs, which does not require
modifications of existing operating systems. In addition,
the VAP approach is cost effective and easy to operate com-
pared with hardware devices such as specialized network
processors, since a VAP is just a software system running
on multiple cores and can be deployed or removed with a
few keystrokes.

To prove the concept of VAP, we have implemented two
VAP-related techniques: helper thread and I/O specializa-
tion. The helper thread is a constructor used to parallelize
the memory accesses, while I/O specialization is a tech-
nique that can take advantage of special domain knowledge
in information retrieval to improve I/O tasks such as disk
I/O. These techniques are described in details in the follow-
ing sections.

4 Helper thread

We have implemented the idea of helper thread in our paral-
lel programming environment called Maotai [29] for multi-
core computers. Maotai has implemented our novel View-
Oriented Parallel Programming (VOPP) [19, 20] on Sun
Microsystems UltraSPARC T1 (aka Niagara) [7]. The nov-
elty of VOPP is that it divides shared memory into views in
order to help remove data races and reduce communication
overhead in parallel programs. For more details of VOPP,
the reader is referred to [19].

4.1 View prefetching

VOPP provides sufficient information for view prefetching
in VOPP, because view primitives likeacquireviewandre-
leaseviewhave to be used when a view is accessed. Those
view primitives, along with view information, can inform
the system to prefetch view data from memory to caches.

Previous work on prefetching techniques [15, 17, 18,
21–24, 26] have received much attention recently with the
advent of chip-level multithreading technology. To prefetch
data accurately and efficiently, efforts have been put into
region selection, which identifies the appropriate regionsto
include a piece of helper code, and phase detection which
identifies the right timing to run the helper code [23].

However, without the help of the above techniques,
VOPP can provide the right information for both the
prefetching regions and the prefetching timings. When a
view is acquired, it is almost for sure that the memory space
of the view is about to be accessed due to the view-oriented
feature of VOPP. When a view is created with thealloc view

primitive, the address and the length of the memory space
of the view are recorded. With this information, we can
prefetch the memory space of a view at the view acquiring
time.

For our view prefetching, we have tried a few different
ways. At first, we used the PREFETCH instruction pro-
vided by UltraSPARC T1, but it cannot help load a large
view into a cache in time. We then used an alternative
solution–helper thread, which does prefetching as a separate
thread. Helper threaded prefetching is a technique which
proved to be promising on multi-core and hyperthreading
platforms [21, 22, 24].

With the help of the view information discussed above,
our helper thread can adapt to the dynamic behavior of a
running application. That means, it works effectively de-
spite a different input data set each time an application is
given. The communication between the helper thread and
the task thread (aka the helped thread) is achieved by a
shared variable that contains the identifier of the view being
acquired. In our implementation, we make the helper sleep
in a wait queue initially. When a view is being acquired,
the task thread wakes up the helper, which then checks the
shared variable to find out which view should be prefetched.

In previous research work, helper threaded prefetching is
used in both chip-level multiprocessors (CMP), which have
multiple cores inside one chip, and Simultaneous Multi-
Threading (SMT) [28] processors, which physically sup-
port simultaneous threads in a single core. The implemen-
tation of a helper with a hardware thread inside an SMT
processor is called a tightly-coupled helper, and the helper
implemented with another core in a CMP is called loosely-
coupled. It had been suggested that a tightly-coupled helper
incurs contention of the same core that is shared among
multiple threads [21, 24]. However, a helper thread that is
located in the same core as the task thread can actually help
prefetch the data into the L1 cache which is much closer
to the CPU than the L2 cache. Although the difference of
the speed between the L1 cache and the L2 cache is not as
significant as that between the L2 cache and the memory,
there are chances that tightly-coupled helpers would pro-
vide further performance gain when we perform read-only
access (e.g.acquireRview). Previous research work could
not compare and evaluate both the loosely-coupled and the
tightly-coupled approaches with experimental results. For-
tunately, with the CMT technology in UltraSPARC T1,
which supports both CMP and SMT, we can now evaluate
them on the same architecture.

4.2 Performance of the helper thread

To evaluate our preliminary implementation of helper
threads, we divide our experiments into two parts. The first
part involves cache misses and the second part involves gen-

eral performance of the helper threads.
The benchmark program is a sum program. It adds all

the integers from a shared array. It is selected because it
is a memory-intensive program that has a regular memory
access pattern, which makes it an ideal program to show the
effectiveness of helper threads.

Since Linux dynamically schedules the processes to any
physical cores, to perform our test, we have to bind the pro-
cesses to specific physical cores with thesetaffinity() sys-
tem call in Sparc64 Linux.

In order to get accurate profiling of cache misses, the L2
cache and the L1 caches are thoroughly cleared before the
computation starts. Since there are no libraries for perfor-
mance profiling for UltraSPARC T1, we have to access di-
rectly the two performance counters, namely PIC and PCR,
by calling theperfctr()system call in Sparc64 Linux.

Cache misses are shown in Table 1 and 2 for two data
set sizes, 4K and 100K, which are used for the integer array
in the sum program. The results in the tables are collected
for the sum program running with one task thread and one
helper thread (if helper threaded prefetching is used).

Helper task thread helper
Type L1 L2 Ticks L1 L2
MTtc 10 1 25685 245 64
MTlc 252 1 28484 64

MTnon 252 63 34362

Table 1: cache misses, 4K data

Helper task thread helper
Type L1 L2 Ticks L1 L2
MTtc 482 131 510084 5875 1447
MTlc 6278 1 567828 1564

MTnon 6278 1563 703808

Table 2: cache misses, 100K data

In the above tables,MTtc, MTlc, and MTnon stand
for VOPP task thread with a tightly-coupled helper thread,
VOPP task thread with a loosely-coupled helper thread, and
VOPP task thread without any helper, respectively. The
columnsL1 andL2 are the L1 and L2 cache misses. The
columnTicks is the number of CPU ticks cost by the task
thread.

From Table 1 and 2, we can see that the helper thread
can significantly decrease the CPU ticks of the task thread.
Compared withMTnon, the tightly-coupled helper can dra-
matically decrease both L1 and L2 cache misses by 96%
and 98% respectively, while the loosely-coupled helper can
decrease only L2 cache misses by 98%.

However, when the data set size is larger, e.g. 100K in
Table 2, the count of L2 cache misses forMTtc is higher
than that ofMTlc, and its L1 cache misses is also increas-
ing. This is largely due to the interference between the task
thread and the helper thread competing for resources in the

same core. Nevertheless, there is a significant performance
gain (28%) by the tightly-coupled helper thread according
to the CPU ticks, which is attributed to the decrease of L1
and L2 cache misses (92% and 91% respectively).

We can also notice that no matter whether we run the
helper thread on the same core or not, the total number of
L2 cache misses from both the task thread and the helper
thread is larger than that ofMTnon. This also applies to
L1 cache misses. The above result is expected due to the
interference between the two simultaneous threads.

Since our experimental results have shown that tightly-
coupled helper threads can perform better for read accesses,
we currently adopt the tightly-coupled approach for the
acquireRview in our implementation of VOPP. However,
since L1 cache is write-through in T1, the tightly-coupled
helper cannot provide the benefits mentioned above and will
incur more contention. Therefore, we use loosely-coupled
helpers for write accesses instead. The performance ben-
efit from the reduced cache misses is reflected in the im-
proved performance of the parallelized sum program, which
is shown in Figure 2.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

ti
m
e
(m

ic
ro
se
co
n
d
s)

processes

MTlc

MTtc

MTnon

OpenMP

Figure 2: performance of helper threaded prefetching for
VOPP

Figure 2 shows the performance of a simple sum pro-
gram that adds up 25,000 integers randomly selected from
an array of 100,000 integers.MTtc, MTlc, MTnon have the
same meaning as above. We only use up to 4 cores to per-
form this test forV OPPlc, because there are only 8 cores
in the T1 chip and thus we can only have 4 cores for the
task threads while the other 4 cores are used by the helper
threads. For comparison purposes, we show the time cost
of the corresponding OpenMP program, which suffers from
performance penalties due to its large synchronization over-
head in the program.

For VOPP with helper threaded prefetching, we can see
a significant improvement of performance. With tightly-
coupled helper threads, VOPP achieves an even better
speedup (34% better thanMTnon at one process). How-
ever, when the number of processes is increasing, the per-
formance gap betweenMTnon and MTlc is decreasing.
This is expected because when the data loaded into each

process becomes smaller, the helper threads are less effec-
tive in terms of cache prefetching. This also applies to
the decreased performance gap betweenMTtc andMTnon,
which is also partially attributed to the high L2 cache misses
of MTtc as mentioned above.

Due to limited time, we have not integrated the helper
threads in more applications yet. Tests on other benchmark
applications with helper threaded prefetching will be carried
out in our future work.

5 I/O Specialization

General-purpose operating systems usually provide disk I/O
optimization in the kernel by providind general-purpose al-
gorithms as they have to serve various kinds of applications.
However, for special-purpose applications, it is better tode-
ploy application level optimization. Application level I/O
optimization allows applications to define their own data
structures and I/O algorithms. In VAP, special-purpose I/O
optimization is defined in the backend, rather than directly
in the application. In this section, we use search engine
as a demonstration of deploying special-purpose I/O op-
timization algorithms, including caching, prefetching and
scheduling.

5.1 Special-purpose Algorithms

Caching can be applied to either query results or posting
lists. Caching query results not only optimizes disk I/O,
but also avoids reprocessing of query evaluation. However,
queries tend to have low frequency of repetition and thus
result in a high cach miss rate [12].

Caching posting lists, on the other hand, can achive a
high hit ratio [12]. Caching policies, like LRU or Least Fre-
quently Used (LFU), define how efficiently a finite amount
of cache is used for large amounts of data on disk. This is
so called dynamic, due to frequent update of cache memory.
One of the challenges for dynamic caching is that caching
variable sized posting lists is quite difficult in terms of effi-
ciency and cache memory management.

Instead of frequent update of cache memory, another
way of caching posting lists is to define which posting lists
are the most important and then let them stay in cache mem-
ory without eviction. This is so called static caching. Be-
cause the most important posting lists are already cached,
there is no need to further update the cache memory. The
question is how to define the importance of postings lists.
One solution is to choose query terms which have the high-
est query-term frequenciesfq(t). Another solution can be
based on document-term frequenciesfd(t). Terms with
high fd(t) have long posting lists, thus consuming more
cache memory. However, caching long posting lists reduces
disk I/O as it takes more time to read long posting lists

from disk. Baeze-Yates et al [12] argue that the importance
should be defined asfq(t)

fd(t) (Posting lists with high query-
term frequencies and short length in size are preferred).
Static caching simplifies cache management by eliminat-
ing cache replacement policy. However, there is a price to
pay by doing so. Because the importance of posting lists is
based on the analysis of the early query log, the importance
needs to be re-defined if incoming queries are outside the
coverage of the early query log. The operation of dealing
such problem is to re-fill the cache, resulting in very low hit
ratio and performance decrease.

Both dynamic and static caching have pros and cons.
Dynamic caching is good at keeping up with frequent
changes in queries, while static caching simplifies cache
management policy and results in high hit ratio under nor-
mal circumstances. An obvious question to address is the
possibility of combining both dynamic and static caching
together. The potential problems are: (1) which posting lists
to cache dynamically and which to cache statically, (2) how
to distribute cache memory usage among them, (3) is there
a performance gain for such a combination.

Prefetching and scheduling are straightforward. The ac-
cess pattern of a search engine can be predicted by the query
terms. Posting lists for the next term can be prefetched
while the current term is being processed.

If we consider that posting lists are sorted in terms of
the alphabetic order of the dictionary terms, we can define
a new scheduler which sorts disk I/O requests in the order
of the dictionary terms. The sorting can be either local or
global, where local means sorting terms in a single query
and global means sorting terms in several queries executed
concurrently. Local sorting has quick individual response
time while global sorting has better overall performance.
One thing to note for the scheduler is that once the sorting
is done in ascending order, then next time the sorting should
be done in descending order, and so on. This allows the disk
head to move from the centre of the disk to the edge and
then back to the centre.

Size of the Collection ≈ 18GB
Number of Documents 1247753

Number of Unique Words 8849995
Average Document Length 975
Size of the Postings File ≈ 818MB

Size of the Dictionary File ≈ 394MB
Size of the Disk Image ≈ 1.2GB

Table 3: Summary of the TREC-2002 Web Track collection

5.2 Performance

We used the document collection of the TREC-2002 Web
Track [16], summarised in Table 3, and the TREC 2007
Million Query Track [9] for evaluation of the document col-

Drive Specification ST380215A
Capacity 80GB

Spindle Speed 7200RPM
I/O Data Transfer Rate 100MB/sec

Cache Buffer 2MB
Average Latency 4.16ms

Table 4: Specification for the test disk [27]

lection. The disk image had a copy of the postings file at the
beginning, followed by the dictionary file starting at a new
sector location. The raw disk image was then copied to the
disk using the Linux dd command.

 100

 150

 200

 250

 300

 350

 400

 450

 500

O_DIRECT Nr O_DIRECT Op Read Nr Read Op

S
ec

on
ds

Figure 3: I/O access comparison of search engines (Nr and
Op stand for Normal and Optimized respectively)

We conducted tests on a PC with an Intel single core Pen-
tium 4 CPU running at 2.4GHz, with 512KB of L2 cache
and a speed of 533MHz for the Front Side Bus. The system
has 768MB of DDR266 main memory. We used separate
disks for installation of kernels and testing. The testing disk
is the IDE primary master, while the kernel disk is config-
ured as the primary slave. The kernel disk is not needed for
the performance test. Table 4 shows the specification for
the testing disk as stated by the manufacturer. The chosen
Linux distribution was Debian Etch, with the default Linux
kernel 2.6.8.

The RDTSC instruction was used for timing purposes
and the number of cycles returned by RDTSC was con-
verted to seconds by dividing by the CPU frequency. In
order to minimise bias in testing results, we re-booted the
testing machine for each run and the swap partition used for
Linux was disabled. Each test was run five times and the
average was taken as the final result.

We carried out four tests: (1) ODIRECT Normal, (2)
O DIRECT Optimized, (3) read() Normal and (4) read()
Optimized. The optimized tests had the application level
I/O optimization enabled, while the normal tests had no ap-
plication level optimization. The ODIRECT tests was es-
sentially the same as the read() tests, and the only difference
was disk access. The ODIRECT option, when specified for

system call read(), bypass the Linux I/O subsystem.
Figure 3 shows the results. The I/O read time was the

total time taken reading the postings from the disk. The
O DIRECT Normal test took the longest time for read-
ing I/O (about 451 seconds). The ODIRECT optimized
test performed about 73.4% better than ODIRECT Nor-
mal. The read() Normal and optimized tests took about 167
and 136 seconds, respectively. Interestingly, read() opti-
mized also benefited from the application level optimiza-
tion. O DIRECT Optimized beat read() Normal by 47 sec-
onds (28% improvement), showing that application-specific
optimization is superior to what is offered by the Linux ker-
nel. O DIRECT Optimized also beat read() Optimized by
16 seconds (11% improvement), demonstrating the over-
head of the Linux I/O subsystem when the application pro-
vides its own I/O optimization.

6 Conclusions and future work

Based on our Counter-Amdahl’s Law, we have proposed the
Virtual Aggregated Processor (VAP) project and its archi-
tecture. Two VAP-related techniques, helper thread and I/O
specialization, have been proposed and implemented. These
techniques have demonstrated that there is a promising po-
tential in exploiting fine-grained parallelism and optimizing
the I/O tasks in the execution of a thread, as targeted by the
VAP project.

In the near future, we will implement the VAP archi-
tecture based on the Xen hypervisor on multi-core com-
puters. We will use information retrieval and data mining
as example domains to demonstrate the effectiveness of the
VAP technology in terms of parallelization and specializa-
tion. The communication channel and the interface between
a VAP and a VAP application will be proposed, standard-
ized, and implemented for development of VAPs for other
domains.

Acknowledgment

The authors would like to thank Stuart Barson for his excel-
lent comments and suggestions on the VAP project.

References

[1] http://en.wikipedia.org/wiki/Moore’slaw.

[2] http://www.openmp.org.

[3] http://www-unix.mcs.anl.gov/mpi/.

[4] http://en.wikipedia.org/wiki/Amdahl’slaw.

[5] VMware. http://www.vmware.com/.

[6] XenSource. http://www.citrixxenserver.com.

[7] UltraSPARC Architecture 2005 specification.
http://opensparc-t1.sunsource.net/, 2005.

[8] UltraSPARC T2. http://www.sun.com/processors/
UltraSPARC-T2/, 2007.

[9] James Allan, Ben Carterette, Javed Aslam, Virgil
Pavlu, Blagovest Dachev, and Evangelos Kanoulas.
Million query track 2007 overview. InProceedings
of TREC, 2008.

[10] Gene Amdahl. Validity of the single processor ap-
proach to achieving large-scale computing capabili-
ties. InIn Conference Proceedings of American Feder-
ation of Information Processing Societies, volume 30,
pages 483–485, 1967.

[11] K. Asanovic et al. The landscape of parallel comput-
ing research: A view from berkeley. Technical Re-
port UCB/EECS-2006-183, University of California
at Berkeley, December 2006.

[12] Ricardo Baeza-Yates, Aristides Gionis, Flavio Jun-
queira, Vanessa Murdock, Vassilis Plachouras, and
Fabrizio Silvestri. The impact of caching on search
engines. InSIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 183–190,
New York, NY, USA, 2007. ACM.

[13] Barham, P., et al. Xen and the art of virtualization. In
In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, pages 164–177, 2003.

[14] Gordon Bell. Paths and cul de sacs on the endless road
to supercomputing. Ininvited talk at the Symposium
on Modern Computing at the 100th Centenary of John
Vincent Atanasoff at Iowa State University, 2003.

[15] T.F. Chen and J.L. Baer. Effective hardware-based
data prefetching for high-performance processors.
IEEE Transations on Computers, 44(5):609–623, May
1995.

[16] Nick Craswell and David Hawking. Overview of the
trec-2002 web track. InTREC, 2002.

[17] G. K. Dorai and D. Yeung. Transparent threads:
Resource sharing in SMT processors for high single
thread performance. InIn Porceedings of Interna-
tional Conference on Parallel Architectures and Com-
pilation Techniques 2002, page 30, 2002.

[18] J. Dundas and T. N. Mudge. Improving data cache per-
formance by pre-executing instructions under a cache
miss. InInternational Conference on Supercomputing,
pages 68–75, 1997.

[19] Z. Huang and W. Chen. Revisit of View-Oriented
Parallel Programming. InProceedings of the Seventh
IEEE International Symposium on Cluster Computing
and the Grid, pages 801–810, 2007.

[20] Z. Huang, M. Purvis, and P. Werstein. Performance
evaluation of View-Oriented Parallel Programming. In
Proceedings of the 2005 International Conference on
Parallel Proceessing (ICPP05), pages 251–258, June
2005.

[21] C. Jung, D. Lim, L. Lee, and Y. Solinhin. Helper
thread prefetching for loosely-coupled multiprocessor
systems. InProceedings of 20th IEEE International
Parallel & Distributed Processing Symposium, 2006.

[22] D. Kim et al. Physical experimentation with prefetch-
ing helper threads on Intel’s hyper-threaded proces-
sors. InProceedings of the 2004 International Sym-
posium on Code Generation and Optimization, pages
27–38, 2004.

[23] J. Lee, Y. Solihin, and J. Torrellas. Automatically
mapping code on an intelligent memory architecture.
In In Proceedings of the 7th International Symposium
on High Performance Computer Architecture, pages
121–132, 2001.

[24] J. Lu et al. Dynamic helper threaded prefetching on
the Sun UltraSPARC CMP processor. InProceedings
of the 38th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 93–104, 2004.

[25] Gordon E. Moore. Cramming more components onto
integrated circuits.Electronics Magazine, 1965.

[26] T. Mowry. Tolerating latency in multiprocessors
through compiler-inserted prefetching.ACM Trans-
actions on Computer Systems, 16(1):55–92, February
1998.

[27] Seagate. Barracuda 7200.10 pata. Product Maunul,
Seagate Technology, August 2007.

[28] D. Tullsen, S. Eggers, and H. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In
In Proceedings of International Symposium on Com-
puter Architecture, pages 392–403, 1995.

[29] J. Zhang, Z. Huang, et al. Maotai: View-Oriented Par-
allel Programming on CMT processors. InIn Proceed-
ings of the 2008 International Conference on Parallel
Proceessing (ICPP08), September 2008.

