
View-based Consistency for Distributed Shared Memory

Z. Huang†, C. Sun‡,

†Departments of Comp. & Infor. Science

University of Otago

Dunedin, New Zealand

Email:hzy@cs.otago.ac.nz, scz@cit.gu.edu.au

M. Purvis†, and S. Cranefield†

‡School of Comp. & Infor. Tech.

Griffith University

Brisbane, Qld 4111, Australia

{mpurvis,scranefield}@infoscience.otago.ac.nz

Abstract

This paper proposes a novel View-based Consistency

model for Distributed Shared Memory. A view is a set

of data objects that a processor has the right to access

in a data-race-free program. The View-based Consis-

tency model requires that the data objects of a view

are updated only before a processor accesses them.

Compared with other memory consistency models, the

View-based Consistency model can achieve data selec-

tion without user annotation and the performance ad-

vantage, though the supporting implementation tech-

niques need to be further explored.

Key Words: Distributed Shared Memory, Sequen-

tial Consistency, Weak Sequential Consistency, View-

based Consistency

1 Introduction

Distributed Shared Memory (DSM) has been an ac-

tive area of research in parallel and distributed com-

puting [14, 7, 2, 5, 4, 1, 16, 17]. A Distributed

Shared Memory (DSM) system provides application

programmers the illusion of shared memory on top

of message passing distributed systems, which facili-

tates the task of parallel programming in distributed

systems. The goal of our research is to make the DSM

systems more convenient to use and more efficient to

implement [9, 16]. In this paper, we propose a View-

based Consistency (VC) model for DSM, which is a

significant step towards our goal.

2 Motivation

The consistency model of a DSM system specifies the

ordering constraints on concurrent memory accesses

by multiple processors, and hence has fundamental

impact on DSM systems’ programming convenience

and implementation efficiency [15]. The Sequential

Consistency (SC) model [13] has been recognized as

the most natural and user-friendly DSM consistency

model. The SC model guarantees that the result

of any execution is the same as if the operations of

all processors were executed in some sequential or-

der, and the operations of each individual processor

appear in this sequence in the order specified by its

own program. This means that in an SC-based DSM

system, memory accesses from all processors may be

interleaved in any sequential order which is consis-

tent with each processor’s memory access order, and

the memory access orders observed by all processors

are the same. One way to strictly implement the SC

model is to ensure all memory updates be totally or-

dered and memory updates performed at one proces-

sor be immediately propagated to other processors.

This implementation is correct but it suffers from se-

rious performance problems [17].

In practice, not all parallel applications require

each processor to see all memory updates made by

other processors, let alone seeing them in order.

Many parallel applications regulate their accesses to

shared data by synchronization, so not all valid inter-

leavings of their memory accesses are relevant to their

real executions. Therefore, it is actually not necessary

for the DSM system to force a processor to propa-

gate all its updates to every other processor (with

a copy of the shared data) at every memory update

time. Under certain conditions, the DSM system can

select the time, the processor, and the data for prop-

agating updates on shared memory to improve the

performance while still appearing to be sequentially

consistent. For example, consider a DSM system with

four processors P1, P2, P3, and P4, where P1, P2, and

P3 share a data object x, and P1 and P4 share a data

object y. Suppose all memory accesses to the shared

data objects x and y are serialized among competing

processors by means of synchronization operations to

avoid data races. Under these circumstances, the fol-

lowing three basic techniques can be used: (1) Time

selection: Updates on a shared data object by one

processor are made visible to the public only at the

time when the data object is to be read by other pro-

cessors. For example, updates on x by P1 may be

propagated outward only at the time when either P2

or P3 is about to read x. (2) Processor selection:

Updates on a shared data object are only propagated

from one processor to another processor which is the

next one to read the shared data object. For exam-

ple, updates on x by P1 may be propagated to only

P2 (but not to P3) if P2 is the next one to read x. (3)

Data selection: Processors propagate to each other

only those shared data objects which are really shared

among them. For example, P1, P2, and P3 may prop-

agate to each other only data object x (not y), and

P1 and P4 propagate to each other only data object

y (not x).

To improve the performance of the strict SC model,

a number of weaker SC models have been pro-

posed [6, 8, 12, 3, 11], which perform one or more

of the above three selection techniques while appear-

ing to be sequentially consistent. However, none of

them can achieve data selection without programmer

annotation [16]. Previous work [16] has argued that a

consistency model should not impose any extra bur-

den on programmers, such as annotation of lock-data

association in the Entry Consistency (EC) model [3]

and scope-data association in the Scope Consistency

(ScC) model [11]. In this paper, we propose a View-

based Consistency (VC) model which, besides time

selection and processor selection, can transparently

achieve data selection.

3 View-based Consistency

During the execution of a DSM parallel program,

multiple processors work on and communicate with

each other through the shared memory. In the shared

memory some data objects are read-only, and some

read/write. To prevent data races (where multiple

processors read/write the same data object concur-

rently), a parallel program has to guarantee that a

processor has gained exclusive access before access-

ing a read/write data object.

We distinguish synchronization data objects from

ordinary data objects in shared memory, just like

many other DSM systems. Synchronization data ob-

jects are those which are explicitly used to enforce

exclusive access to other data objects, such as locks

and barriers1. The rest of the data objects in shared

memory are called ordinary data objects. Exclusive

access to the synchronization data objects is guaran-

teed by system-provided primitives, such as acquire,

release, and barrier, while exclusive access to the ordi-

nary data objects has to be guaranteed by using those

system primitives. Like many weak Sequential Con-

sistency models, sequential consistency for the syn-

chronization data objects is guaranteed by the sys-

tem; however, sequential consistency for the ordinary

data objects is achieved conditionally, depending on

the underlying consistency model. Therefore, we only

need to be concerned with the consistency of the or-

dinary data objects.

A view is a set of ordinary data objects a proces-

sor has the right to access in shared memory. We

say a processor has the right to access some data ob-

ject if and only if it has gained exclusive access to

the data object or the data object is read-only. At

any time point of an execution, suppose any two pro-

cessors P1 and P2 have views V1 and V2 respectively.

Then V1 ∩ V2 must only contain read-only data ob-

jects; otherwise a data race happens. Fig. 1 shows

a snapshot of views of processors in shared memory.

The overlapping part of different views only contains

read-only data objects.

Many DSM systems require explicit acquire, release

and barrier in DSM programs to achieve weak Se-

quential Consistency. An execution of such a DSM

program can be viewed as a sequence of barrier ses-

sions shown in Fig. 2. A barrier session begins with a

barrier and ends with another barrier. Inside a barrier

session there is a sequence of regions which are delim-

1A barrier is a synchronization device that requires all pro-

cesses to wait for the last of them to arrive at the same synchro-

nization point. It can be implemented by acquire and release.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

	�	�	�	�	�		�	�	�	�	�		�	�	�	�	�		�	�	�	�	�		�	�	�	�	�		�	�	�	�	�		�	�	�	�	�		�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

������������
������������
������������
������������
������������

�����
�����
�����

���
���
���

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

P2 P3

read-only data

shared memory

P1

Figure 1: A snapshot of processors’ views in a pro-

gram execution

ited by acquire, release and barrier. A critical region

begins with an acquire and ends with a release, while

a non-critical region begins with a release (the outer-

most one in nested critical regions) or a barrier and

ends with an acquire (the outermost one in nested

critical regions) or a barrier. A non-critical region

does not overlap with any critical region, but a crit-

ical region may be contained within another critical

region because of nested critical regions.

barrier session session
barrier

B

B: barrier A: acquire R:release

non-
critical
region

A
critical
region R

non-
critical
region

A
critical
region R B B

program order

Figure 2: A view of a program execution based on

regions

In a DSM program, exclusive access to a data ob-

ject can only be gained in the following three ways:

1. Implicit assignment by the programmer inside a

barrier session. Exclusive access is guaranteed

by barriers.

2. Explicit acquisition by calling the acquire prim-

itive. Exclusive access is guaranteed by critical

regions.

3. Implicit acquisition by changing the status of

data objects protected by critical regions. For

example, exclusive access to a task from a task

queue is guaranteed by removing the task from

the lock-protected task queue.

Therefore, in an execution of a DSM program,

only when a processor calls synchronization primi-

tives, such as barrier, acquire, and release, does its

view change, as shown in Fig. 3. A processor’s view

is constant inside a critical region or a non-critical

region. Only when a processor moves from one re-

gion to another, does it gain or lose exclusive access

to some data objects.

According to this observation, views can be classi-

fied as Critical Region Views (CRV) and Non-critical

Region Views (NRV). A processor’s CRV is its view

while it executes inside a critical region. A processor’s

NRV is its view while it executes inside a non-critical

region. More precisely, the following definitions are

given for CRV and NRV.

Definition 1 Critical Region View (CRV)

Besides read-only data objects, a processor’s CRV in-

cludes the data objects to which the processor has

exclusive access guaranteed by the current critical re-

gion and the current barrier session.

Definition 2 Non-critical Region View (NRV)

Besides read-only data objects, a processor’s NRV in-

cludes the data objects to which the processor has

exclusive access guaranteed by the status of critical-

region-protected data objects and the current barrier

session.

Based on the definitions of CRV and NRV, we pro-

pose a View-based Consistency (VC) model with the

following consistency conditions.

Definition 3 Conditions for View-based Consis-

tency

• Before a processor Pi is allowed to enter a crit-

ical region or a non-critical region, all previous

write accesses to the ordinary data objects of the

corresponding CRV or NRV must be performed

with respect to Pi according to their order.

• The sequential consistency of synchronization

data objects is guaranteed by the system primi-

tives, such as acquire, release, and barrier.

A write access to a memory location is said to be

performed with respect to processor Pi at a time point

when a subsequent read access to that location by Pi

returns the value set by the write access.

The VC model has the following properties:

NCRi

CRi
P2

P1

get exclusive
access to some data
objects in CR i

lose exclusive

access to some data

access to some data

objects in NCR

still hold exclusive
objects in CR , buti

i

A R

A R A

requesting
exclusive access
to some data

granting
exclusive access

objects in CR
objects in CR

NCRCR

i
i

to some data

NCRB

NCRB

A CR R B B

R B B

program order

program order

B: barrier A: acquire R:release

CR: critical region NCR: non-critical region

CRi

Figure 3: Views and their transitions

• In the VC model only when a processor moves

from one region to another region, does its view

change. A processor’s view is constant within a

region.

• In the VC model when a processor changes to a

new region, all the data objects of its new view

must be updated.

• The VC model guarantees the same execution

result as the Sequential Consistency for a data-

race-free DSM program. Read/write data ob-

jects are accessed sequentially by exclusive access

and they are updated once the exclusive access

to them is gained.

• The VC model can achieve time selection, pro-

cessor selection, and data selection. Data selec-

tion can be achieved by updating only the data

objects in the current view of a processor.

4 Comparison of related mod-

els

Among the different consistency models, only Scope

Consistency (ScC) [11] and Entry Consistency (EC)

[3] can achieve data selection. However the VC model

is different from them in the following aspects.

User annotation: VC requires no user annota-

tion to achieve data selection. EC requires the user

to specify the association between a synchronization

data object s and the shared data Ds, where s con-

trols access to a critical region protecting Ds. This

specification is essential for EC to achieve data selec-

tion. If the specification is not correct, EC can not

achieve data selection correctly. ScC also requires the

user to specify scope annotation for some programs,

though it can detect scope automatically for some

other programs.

Data selection: To selectively update data ob-

jects, VC uses the view, while EC uses guarded shared

data Ds and ScC uses the scope. However, the view

in VC is different from Ds in EC and the scope in

ScC. Both Ds and scope are static and fixed with a

particular synchronization data object or a critical re-

gion. Even if some data objects are not accessed by a

processor in a critical region, they are updated sim-

ply because they are associated with the lock or the

critical region. However, the view in VC is dynamic

and may be different from region to region. Even for

the regions protected by the same lock, the views in

them are different and depend on the data objects

actually accessed by the processor in the regions. Be-

cause of this difference, VC is more selective than

EC and ScC in terms of data selection. For example,

suppose lock l is used to protect a set of shared data

objects S = {s1, ...sn}. Because it is quite common

for a processor to access only some data objects in S

after it acquires lock l, we can suppose the accessed

data objects are S′ ⊂ S. Then when the processor

enters the critical region, the Ds in EC and the scope

in ScC are S, while the view in VC is S ′. EC and

ScC have to update all data objects in S, while VC

only updates data objects in S ′.

Interface for programmers: VC provides a sim-

ple and clear interface for the programmer: if a pro-

gram is data-race free, VC can guarantee the same

execution result as Sequential Consistency. But EC

requires the programmer to provide correct lock-data

association. If the lock-data association is not cor-

rect, EC does not guarantee the correct execution of

the program. Similarly, ScC does not guarantee the

same execution result as Sequential Consistency for

some data-race-free programs if explicit scope anno-

tation is not correctly provided by the programmer.

Apart from the above differences, VC has more po-

tential to reduce the effect of false sharing2 in page-

based DSM. It can reduce the false sharing effect in

the following two levels:

1. Restrict the propagation of invalidation notices.

Only the invalidation notices that are useful for

updating the data objects in a processor’s new

view are propagated to the processor;

2. Restrict the effective scope of invalidation no-

tices. Only the invalidation notices that are use-

ful for updating the data objects of the current

view of a processor are effective in the current

region of the processor.

5 Implementation issues

There are two technical issues in the implementation

of VC. One is view detection, and the other is view

transition. View detection means that before a pro-

cessor enters a new region we should find out all the

2False sharing occurs when two processors update different

shared data objects that lie in the same memory consistency

unit (e.g. a page).

data objects in its new view. View transition means

that when a processor’s view changes we should up-

date all the data objects of its new view. Any correct

implementation of the VC model should guarantee

that before a processor enters a new region, view de-

tection and view transition are achieved correctly.

View detection can be implemented at compile time

or at run time. Through analysis of the program at

compile time, data dependency can be detected and

could be used for view detection. At run time we can

record the updated data objects in every region and

calculate the view in each region, though sometimes

the calculated view is larger than the real one. The

more accurately the view is detected, the more data

selection is achieved in the VC model. We will discuss

the techniques for view detection in a later paper.

In view transition, to update data objects, we can

use either the update protocol or the invalidation pro-

tocol [16]. If the update protocol is used, we should

propagate merely the updates on data objects of the

new view to the processor. If the invalidation protocol

is used, we should propagate merely the invalidation

notices involved with the new view, and restrict the

effect of other unrelated invalidation notices. These

techniques can be developed by adapting the proto-

cols proposed in references [9] and [10].

6 Conclusions

In this paper we have proposed a novel View-

based Consistency (VC) model for DSM. Compared

with other DSM consistency models, this model can

achieve data selection without user annotation and

reduce more false sharing effect by only updating

data objects in the view of a processor. Like some

other weak Sequential Consistency models, the VC

model can guarantee the same execution result as

the Sequential Consistency model for data-race-free

programs. Further research should be carried out on

automatic view detection and view transition so as to

implement VC efficiently.

References

[1] C.Amza, et al: “TreadMarks: Shared memory

computing on networks of workstations”, IEEE

Computer, 29(2):18-28, February 1996.

[2] H.E. Bal, M.F. Kaashoek, and A.S. Tanen-

baum: “Orca: A language for parallel program-

ming of distributed systems”, IEEE Transac-

tions on Software Engineering, vol. 18, pp.190-

205, March 1992.

[3] B.N. Bershad, et al: “Shared Memory Parallel

Programming with Entry Consistency for Dis-

tributed Memory Multiprocessors”, CMU Tech-

nical Report CMU-CS-91-170, September 1991.

[4] B.N. Bershad, et al: “The Midway Distributed

Shared Memory System”, In Proc. of IEEE

COMPCON Conference, pp.528-537, 1993.

[5] J.B. Carter, J.K. Bennett, and W. Zwaenepoel:

“Implementation and performance of Munin”, In

Proceedings of the 13th ACM Symposium on Op-

erating Systems Principles, Pages 152-164, Oct.

1991.

[6] M. Dubois, C. Scheurich, and F.A. Briggs:

“Memory access buffering in multiprocessors”,

In Proc. of the 13th Annual International Sym-

posium on Computer Architecture, pp.434-442,

June 1986.

[7] B. Fleisch and R.H. Katz: “Mirage: A coherent

distributed shared memory design”, In Proc. of

the 12th ACM Symposium on Operating Systems

Principles, pp.211-223, Dec. 1989.

[8] K. Gharachorloo, D.Lenoski, J.Laudon: “Mem-

ory consistency and event ordering in scalable

shared memory multiprocessors”, In Proc. of the

17th Annual International Symposium on Com-

puter Architecture, pp.15-26, May 1990.

[9] Z. Huang, W.-J. Lei, C. Sun, and A. Sattar:

“Heuristic Diff Acquiring in Lazy Release Con-

sistency Model”, In Proc. of 1997 Asian Com-

puting Science Conference, Lecture Notes in

Computer Science, pp.98-109, Springer Verlag,

1997.

[10] Z. Huang, C. Sun, and A. Sattar: “Exploring re-

gional locality in distributed shared memory”, In

Proc. of 1998 Asian Computing Science Confer-

ence, Lecture Notes in Computer Science 1538,

pp.142-156, Springer Verlag, 1998.

[11] L. Iftode, J.P. Singh and K. Li: “Scope Con-

sistency: A Bridge between Release Consistency

and Entry Consistency”, In Proc. of the 8th An-

nual ACM Symposium on Parallel Algorithms

and Architectures, 1996.

[12] P. Keleher: “Lazy Release Consistency for Dis-

tributed Shared Memory”, Ph.D. Thesis, Dept

of Computer Science, Rice University, 1995.

[13] L. Lamport: “How to make a multiprocessor

computer that correctly executes multiprocess

programs”, IEEE Transactions on Computers,

28(9):690-691, September 1979.

[14] K.Li, P.Hudak: “Memory Coherence in Shared

Virtual Memory Systems”, ACM Trans. on

Computer Systems, Vol. 7, pp.321-359, Nov.

1989.

[15] D. Mosberger: “Memory consistency models”,

Operating Systems Review, 17(1):18-26, Jan.

1993.

[16] C. Sun, Z. Huang, W.-J. Lei, and A. Sattar: “To-

wards Transparent Selective Sequential Consis-

tency in Distributed Shared Memory Systems”,

In Proc. of the 18th IEEE International Confer-

ence on Distributed Computing Systems, pp.572-

581, Amsterdam, May 1998.

[17] A.S. Tanenbaum: Distributed Operating Sys-

tems, Prentice Hall, 1995.

