Optimistic Concurrency Control for Context-Specific

Consistency in Distributed Real-Time Group Editors

Zhiyi Huangt
1Dept of Computer Science
University of Otago
Dunedin, New Zealand
Email:{hzy}@Qcs.otago.ac.nz

1 Introduction

Real-time group editors allow a group of users to view
and edit the same text/graphic/image/multimedia doc-
ument at the same time from geographically dispersed
sites connected by communication networks. Those real-
time group editors are required to have the following
characteristics: (1) real-time: the response to local user
actions is quick (ideally as quick as a single-user editor),
and the latency for reflecting remote user actions is low
(determined by external communication latency only);
(2) distributed: cooperating users may reside on differ-
ent machines connected by different communication net-
works with nondeterministic latency; (3) unconstrained:
multiple users are allowed to concurrently and freely edit
any part of the document at any time, in order to facil-
itate free and natural information flow among multiple
users.

The requirements for good responsiveness and for sup-
porting unconstrained collaboration have led us to adopt
a replicated architecture for the storage of shared docu-
ments: the shared documents are replicated at the local
storage of each participating site. One of the most sig-
nificant challenges in designing and implementing real-
time group editors with a replicated architecture is con-
sistency maintenance of replicated documents.

In the past literatures [], consistency maintenance
is achieved by operational transformation [| integrated
with traditional locking schemes. However, since lock-
ing schemes require user intervention, it is inconvenient
in an brainstorming editing session and inflexible in an
highly-cooperative environment.

In this paper, we propose an Optimistic Concurrency
Control (OCC) scheme in distributed real-time group ed-

Chengzheng Suni

1School of Comp. and Infor. Tech.

Griffith University
Brisbane, QId 4111, Australia
{scz}Qcit.gu.edu.au

itors, which, incoporating with operational transforma-
tion, can achieve consistency maintenance conveniently
and flexibly.

2 Inconsistency problems

There are two different types of inconsistency prob-
lems in distributed real-time group editors. One is
generic inconsistency problem, which is concerned with
whether editing operations are executed in the right or-
der, achieve the original effects, and result in an identi-
cal final result, etc. It is further divided into divergence,
causality-violation, and intention-violation. Divergence
means that operations may arrive and be executed at
different sites in different orders, resulting in divergent
final results. Causality violation means that operations
may arrive and be executed in an order different from
their causal order, due to different transmission delays.
Intention violation means that the actual effect of an
operation at the time of its execution may be different
from the originally intended effect of this operation at
the time of its generation, due to concurrent generation
of operations. For the limited space of the paper, we
only explain divergence here by using an example. For
example, suppose that the initial document at all sites
contains the text ”ABCD” and two users issues an oper-
ation concurrently. User A issues O; which inserts ”1”
at position 1, and user B issues Oy which inserts ”3” at
position 3. These operations may arrive and be executed
at different sites in different order, resulting in divergent
final results. Since local operations are executed imme-
diately, the order of operations executed at user A site
is O1 O3, and the order at user B site is O, O;. Conse-
quently, the final text is ”A1B3CD” at user A site and

”A1BC3D” at user B site.

Interestingly, the generic inconsistency problems can
not be solved by the traditional concurrency control
schemes, but only by operational transformation [].

The other inconsistency problem is context-specific,
which is concerned with whether the data integrity of the
shared document is maintained with respect to the spe-
cific application context. For example, consider a shared
document with the following text:

? Transformation preserve operation intention.”

In this text there is an English grammar error (in-
dicated by the underlined text), i.e. in the text it should
be ”can preserve”, or "preserves” or the like. Assume
that two users observed the error and wanted to correct
it in two different ways: one user issues an operation to
insert "can ” at the starting position of ” preserve”, while
another user issues a concurrent operation to insert
”s” at the ending position of ”preserve”. Suppose the
editing system has used the operational transformation
to ensure generic consistency. Then, after the execution
of these two concurrent operations at all sites, the text
would be:

Transformation can preserves operation intention.”

From generic consistency point of view, this result
is correct since all sites have the same document
contents and the intended effects of all operations have
been achieved. This result is, however, incorrect in the
context of English grammar.

Traditional locking schemes have been used to solve
the context-specific inconsistency problems []. The users
can use locking facilities to enforce mutual exclusion over
specific regions (e.g., an English word, a statement, or a
paragraph, etc), then either one of the two users could
obtain an exclusive lock on the whole statement before
modifying it, and the final text would be either:

? Transformation preserves operation intention” or:

? Transformation can preserve operation intention”

which ensures the context-specific consistency (in
terms of English grammar).

The locking schemes adopted in group editors can be
classified into three categories. The first is pessimistic
locking, in which a user is not permitted to edit a region
until the requested lock has been granted. The second

is optimistic locking, in which a user is permitted to edit
a region while waiting the requested lock. If the locking
request is indeed successful, the user is able to continue
editing that region without blocking. If the locking re-
quest finally fails, the user is not allowed to continue
editing that region, and what this user has done during
waiting for the lock will be undone. The third is optional
locking [], in which a user may update any unlocked re-
gion without necessarily requesting a lock on it. If a lock
has been placed on a region, however, a user can update
this locked region only if s/he owns a lock covering the
region.

However, locking schemes have the following disadvan-
tages in an cooperative environment. (1) User interven-
tion: no matter what kind of locking schemes is adopted,
users are interfered with requesting and releasing locks
in an brainstorming editing session. If one user locking a
region finishs his/her editing without unlocking it, other
users may never edit that region. (2) Inflexibility: once
a region is locked, other users have no chance to update
it, even when the user doesn’t update it at the moment.
It is not flexible enough in an cooperative environment.

To avoid those problems caused by locking schemes,
in this paper we propose an optimistic concurrency con-
trol scheme to solve the context-specific inconsistency
problems in distributed real-time group editors.

Optimistic concurrency control was proposed to han-
dle concurrent transactions [?]. The idea behind it is
simple: just go ahead and do whatever you want to,
without paying attention to what anybody else is doing.
If there is a problem (conflict), worry about it later.

The key point in optimistic concurrency control is to
detect conflicts and resolve them if they occur. What
optimistic concurrency control does in our implementa-
tion is to keep track of the history of operations and
undo/drop some operations if conflicts happen.

For example, to solve the above context-sepcific in-
consistency problems, we define that two concurrent op-
erations on the same region (e.g. a statement) conflict
with each other. In the above example, suppose user A
issues the operation O; to insert ”can” while user B is-
sues the operation Oy to insert ”s”. O; and O, conflict
with each other since they are concurrent and on the
same statement

" Transformation preserve operation intention”.

According to the optimistic concurrency control,
we allow both operations to be immediately executed

locally. When O; arrives at user B site and Oy at
user A site, we can discover the conflict at both sites.
What we need now is a consistent solution to resolve
the conflict at each site. Suppose the solution is to drop
O, and keep O; according to the users’ priority. Then
O, is dropped at user A site and is undone at user B
site. Finally both sites have the same text with the
correct English grammar (Context-sepcific consistency
is ensured).

? Transformation can preserve operation intention”.

The big advantages of optimistic concurrency con-
trol are that it is user intervention free and allows
maximum concurrency because no user ever has to wait
for a lock. The disadvantage is that it may undo/drop
some operations, which is not a problem in group editors
if users are warned properly in advance or informed
afterwards.

The challenge of implementing optimistic concurrency
control in distributed real-time group editors is how to
discover conflicts and how to resolve them consistently
in a distributed environment.

3 Optimistic concurrency control
in real-time group editors

In this section we will discuss the optimistic concurrency
control scheme in distributed real-time group editors in
a generic way.

Following Lamport [], we first define a causal ordering
relation on operations in terms of their generation and
execution sequences as follows.

Definition 1 Causal Ordering Relation "—”

Given two operations O, and Oj, generated at site ¢
and j, then O, — O, if and only if (1) i=j, and the
generation of O, happened before the generation of Oy;
(2) i # j, and the execution of O, at site j happened
before the generation of Oy; (3) there exists an operation
Og, such that O, = O, and O, — Op.

Definition 2 Dependent and Independent Operations

Given any two operations O, and Oy, (1) Oy is said to
be dependent on O, if and only if O, — Op; (2) O, and
Oy are said to be independent (or concurrent) if and only

if neither O, — Op, nor Oy = O,, which is expressed as
Oa“Ob-

To capture the causal relationship among all opera-
tions in the system, a timestamping scheme based on a
data structure —State Vector (SV)—can be used [].

Definition 3 State Vector (SV)

Let N be the number of cooperating sites in the system.
Assume that sites are identified by integers 0,...,N — 1.
Each site maintains an SV with N components. Ini-
tially, SV[i]:=0, for all i {0,...,N — 1}. After executing
an operation generated at site i, SV[i]:=SV[i]+1. An
operation is executed at the local site immediately after
its generation and then multicast to remote sites with a
timestamp of the current value of the local SV.

Given any two operations O, and Oy, O, — O, if
and only if their State Vector SV, and SV} satisfy the
following conditions:

(1) SV,[i] < SV4[i], for all ¢ € {0,..N —1};

(2) 3i € {0,...N — 1}, SV, [7] < SV;[i].

Definition 4 Total Ordering Relation "=

Given two operations O, and Oy, generated at sites ¢ and
j and timestamped by SVp, and SVp,, respectively, then
0, = Oy, if and only if (1) sum(SVp,) < sum(SVop,)
or (2) i < j when sum(SVp,) = sum(SVp,), where
sum(SV) = Zﬁi_ol SV[i]

To facilite undo operation in optimistic concurrency
control, each site maintains a history buffer (HB) for sav-
ing executed operations at each site. It is also required
in operational transformation.

3.1 Optimistic concurrency control

To discover conflict operations, for each operation, we
need to identify its region (a word, a statement, or a
paragraph) and its dependency relationship with other
operations. To identify a region, we can use the region
delimeters, such as space character for word region, pe-
riod(”.”) for statement region, and return key for para-
graph region. Each site can dynamically maintain a data
structure to record the starting position and ending po-
sition of every region. It is dynamically changed when
an operation is executed. This data structure can help
detect if two independent operations update the same
region.

Below we present the scheme to identify conflict oper-
ations.

Scheme 1: Identification of Conflict Operations (ICO)

1. For a new operation O, first check the history buffer
HB if there are any operations which are independent
with O.

2. If there is no operations independent with O, report
that no conflict is detected.

3. If there are some operations independent with O,
check if any of them update the same region as O’s.

4. If none of them updates the same region as O’s,
report that no conflict is detected; otherwise report that
conflict is detected.

To resolve conflict between two operations, we need
to give each operation a priority. The priority shows
how much priviledge an operation can be executed on a
region when conflicts happen. We will discuss different
schemes to assign priority to operations shortly. Below
we present the scheme to resolve conflict operations.

Scheme 2: Resolution of Conflict Operations (RCO)

1. For a new operation O and a set of conflict opera-
tions CO, check their priorities.

2. If there is an operation in C'O which has priority
higher than O’s, drop O and return;

3. If all operations in C'O have priority lower than
O’s, undo all operations in CO and return.

3.2 Priority assignment

1. User identifier

We can use the user identifier as the priority for the
operations. When a user issues an operation, his/her
identifier is attached to the operation as its priority.
Since user identifier is unique, the operations from differ-
ent users have different priorities. The operations with
smaller user identifier have higher priority.

The advantage of the scheme is that it is sim-
ple. However, since the operations with smaller user
identifier always override other conflicting operations
from users with larger identifier, it is not fair and flexible.

2. Total order

We can use the total order of the operations as priority.
The total order can be decided by the state vector of
the operation and the user identifier, as described in the
definition of Total Ordering Relation. The operations
with smaller total order have higher priority.

Besides simpleness, the advantage of the scheme is
that it is fair to every user. The problem is, however,
none of the users is sure that his/her operations will
be faithfully executed if they are concurrent with other
users’. Though this problem can be relieved by inform-
ing the user if his/her operations are dropped/undone,
sometimes we want to ensure one important user’s oper-
ations on some region are not dropped or undone, just

as if that user has locked that region.
3. Ownership and total order

Users may apply for ownership of a region. Once a
user has ownership of a region, his/her operations will
override any operations conflicting with them. So the
owner’s operations will have the highest priority. For
other non-owner users, if their operations conflict with
each other, we resolve the conflict by using the total
order as their priority.

The effect of OCC with this scheme of priority assign-
ment is similar to locking schemes in that only one user
has the absolute right to update a region. It is differ-
ent from locking schemes, however, in that other users
can also update the same region as the owner as long
as there is no conflict. Even if the owner forgets to dis-
miss his/her ownership, other users can still update that
region freely. So it is more flexible than locking schemes.

The disadvantage of this scheme is that it needs user
intervention to request/dismiss ownership. But com-
pared with locking schemes, it still has the advantage
of flexibility.

4. Entrance order

We can also use the entrance order as priority. When
a user moves his/her cursor to a new region, an entrance
order is automatically assigned to the user by a manager
according to his/her order of entrance to that region.
Then all operations from the user on that region are
given the user’s entrance order as their priority. The user
who stays in a region longest has the highest priority in
the region.

In this scheme, the complication is the dynamic assign-
ment of entrance order. A user may enter and leave a
region frequently. When a user enters a region, a unique
sequence number should be assigned as his/her entrance
order. Each time the sequence number is assigned it is
increased by 1. When a user leaves a region, the one
who enters the region next to him/her naturally has the
highest priority in the region. Since the entrance order
is always increased, it may run out of unique numbers
after some time and therefore garbage collection has to
be used on the resource of unique numbers. A manager
is used to handle the assignment of entrance order and
the garbage collection.

This scheme has the advantages of user intervention
free and fairness to every user.

4 Integrating generic consistency
control with OCC

Generic consistency is maintained by scheduling the ex-
ecution order of operations and operational transforma-
A Undo/Transform-Do/Transform-Redo scheme
has been proposed to maintain the generic consistency [].

tion.

Before a new operation is executed, the scheme makes
sure it is causally ready to avoid causality violation. To
achieve convergence, some operations executed before
are undone and then redone after the new operation so
that the total ordering relation of operations is main-
tained.

To preserve the generic intention, a Generic Opera-
tion Transformation (GOT) control algorithm has been
proposed in [|. It uses inclusion and ezclusion trans-
formations to transform a new operation before its ex-
ecution. Inclusion transforms an operation O, against
another independent operation Op in such a way that
the impact of Oy is effectively included into O,. Con-
sider the same example in Section *. O inserts ”1” at
position 1, and O, inserts ”3” at position 3 on the shared
text 7ABCD”. After O, is transformed against O; by
inclusion, Oy becomes O, which inserts ”3” at position
4. Exclusion transforms an operation O, against another
independent operation Oy in such a way that the impact
of Oy is effectively excluded from O,. For example, After

% is transformed against O; by exclusion, O} becomes
0s.

Formal description of Undo/Transform-
Do/Transform-Redo scheme, GOT control algorithm,
and inclusion and exclusion transformations can be seen
in [].

To handle both generic inconsistency and context-
specific inconsistency, we have to integrate OCC with the
Undo/Transform-Do/Transform-Redo scheme. This in-
tegration results in the following Undo/Transform-OCC-
Do/Transform-Redo scheme. Like the Undo/Transform-
Do/Transform-Redo scheme, the scheme first undoes the
operations whose total order is after that of the new op-
eration, and then transforms the new operation by using
the GOT control algorithm. After the transformation of
the new operation, we use the Identification of Conflict
Operations (ICO) scheme to check if it conflicts with any
operations in the history buffer HB. We use ICO after the
transformation of the new operation because the trans-
formation can guarantee the correct detection of shared
regions in ICO. If ICO reports no conflict, we execute

the new operation, and transform and redo the undone
operations just like the Undo/Transform-Do/Transform-
Redo scheme. But if ICO reports conflicts, we need to
use the Resolution of Conflict Operations scheme to re-
solve the conflicts. If the resolution is to drop the new
operation, then we simply redo the undone operations.
However, if the resolution is to undo other operations in
HB, we need to undo conflict operations and transform
other affected operations according to the operational
transformation.

However, if we adopt the above idea we will have de-
rived inconsistency problems. For example, we have op-
erations O1, O2, and O3 in Figure ??. Their dependency
relationship is 02|01, 02|03, and O — Osz. Suppose
their total ordering relationship is O1 = Oa = Ogs, their
priority has the relation Po, < Pp, < Po,, and a re-
gion is one word. Assume the initial text is ”ABCD?”,
O inserts ”1” after ”A” (denoted as Insert(’17,1)), O
inserts ”2” after "B” (denoted as Insert(”2”,2)), and
Os inserts ”3” after ”C” (denoted as Insert(”3”,4)). At
site 0, O; is transformed and executed first and then
text becomes ”A1BCD”; when Os comes, conflict is dis-
covered and O; is undone; then O, is transformed and
executed, and the text becomes ”"AB2CD”; When O3
comes, conflict is again discovered and O, is undone;
then O, is transformed and executed, and the text be-
comes "ABCD3”. At site 1, the operations comes in an
order 020103. After conflict resolution, we only get O3
executed and the final text becomes ” ABCD3”. At site 2,
however, the the operations comes in an order O1030-.
After conflict resolution, we can get O; and O3 executed
and the final text becomes "AB2C3D”. Obviously, the
above results are inconsistent. We have divergence prob-
lem again. Moreover, we have intention violation in both
site 0 and 1, in which ”3” is inserted into a position dif-
ferent from the initial intention (insertion after ”C”).

The problem is caused by inconsistent handling order
of conflict operations. At site 0 and 1, Oy overrides O1,
and then O3 overrides O». Because O; is dropped or un-
done, O3 inserts ”3” at the wrong position and therefore
intention is violated. Because O, is overriden by O3, O1,
which is overriden by Os, should be resumed and exe-
cuted if it does not conflict with O3. At site 3, O; and O3
are first executed, then comes O, which is dropped after
the conflict resolution. Actually this site happened to
preserve the intention of O3 because O; is not overriden
by Oa, and have the correct final result. The solution for
the problem is we need to maintain a Conflict Operation

List (COL) for each operation, which contains all the
conflict operations overriden by the operation. When an
operation is overriden by a new operation, every opera-
tions in its COL should be tested and redone if it does
not conflict with the new operation.

Algorithm (Undo/Transform-OCC-Do/Transform-
Redo Scheme) Given a new causally ready operation
Onew, and HB = [EQy,...,EOy,,...,EO,], the following
steps are executed:

(1) Undo operations in HB from right to left until an
operation EQ,, is found such that EO,, < Opew.

Assume the undone operations UDL = [EOp+41, ...,
EO,] and HB; = [EO», ..., EOy].

(2) Transform O,,eyy into EO ey by applying the GOT
control algorithm with H B; as the history buffer.

(3) Use ICO scheme to check if EQ,,, conflicts with
any operations in HB; and UDL. If ICO reports any
conflict, continue; otherwise go to step 8.

(4) Use RCO scheme to check if EOQyey should be
dropped to resolve the conflicts. If EQ,., should be
dropped, and the conflict operation is FO., append
EOpeq into EO.’s COL, mark EQ,¢y, as nullified in HB,
and go to step 9; otherwise continue;

(5) Check HB; from right to left for any operation
EO; conflicting with EOpey- (a) Undo EO;, mark it as
nullified in HB, and append it into EQ,,¢,’s COL.

(b) For every operation after EO; in HB (including
EOpeqy and the nullified operations), exclude the effect
of EO; by ezclusion transformation.

(c) For every operation EO;, in EO;’s COL, remove
its nullified mark and redo it, and for every operation
after EO;, in HB, include the effect of EO;_ by inclusion
transformation.

(6) Repeat step 5 until there is no conflict operation
in HB;.

(7) For each operation EOQy in UDL, (a) Include the
effect of EOpeqy by inclusion transformation. (b) check
if it conflicts with EO ey

(c) If EO, conflicts with EQy,e, mark it as nullified,
and for each operation EQ; after EO, in UDL, exclude
EO.’s effect by ezclusion transformation.

(8) Execute EO -

(9) Redo all operations without nullified mark in UDL
sequentially from left to right.

