
Noname manuscript No.
(will be inserted by the editor)

Restricted Admission Control in View-Oriented
Transactional Memory

Kai-Cheung Leung · Yawen Chen · Zhiyi Huang

the date of receipt and acceptance should be inserted later

Abstract This paper proposes a Restricted Admission Control (RAC) scheme
for View-Oriented Transactional Memory. The scheme can control the number of
threads concurrently accessing a view in order to reduce the number of aborts of
transactions. The RAC scheme has the merits of both the locking mechanism and
the transactional memory. A theoretical model is proposed to analyze the perfor-
mance of the RAC scheme and to provide guidance for dynamic adjustment of
the number of concurrent threads accessing the same view. Experimental results
demonstrate that theoretical RAC model can mostly provide correct guidance to
transactional concurrency control. Our RAC implementation shows that RAC can
optimize concurrency control of transactions and performs much better than con-
ventional transactional memory systems such as TinySTM that have no dynamic
admission control.

Keywords transactional memory · deadlock · concurrency control · Restricted
Admission Control (RAC)

1 Introduction

Parallel programming is becoming mainstream since multicore CPUs have become
pervasive. There is a pressing need for parallel programming models to facilitate
both performance and convenience. Traditional lock-based programming models
can be made efficient but have tedious programmability and are prone to errors
such as deadlock. New programming models based on transactional memory are
more convenient, but may suffer from low performance [5,18].

Traditionally locking [17,21] is used for concurrency control, where multiple
threads/processes1 have to access a shared data object in an exclusive way. Atomic

Kai-Cheung Leung, Yawen Chen and Zhiyi Huang
Department of Computer Science
University of Otago
E-mail: {kcleung, yawen, hzy}@cs.otago.ac.nz

1 In the rest of the paper, we use “thread” to mean both process and thread for simplicity
since they are identical in terms of concurrency control.

2 Kai-Cheung Leung et al.

access to a shared object is achieved through a locking mechanism. This lock-
based concurrency control is generally regarded as pessimistic approach [26] where
conflicts are resolved before they are allowed to happen. Even though locking is an
effective mechanism to resolve conflicts, it could result in the deadlock problem if
multiple objects are locked in different orders by multiple threads. Moreover, apart
from the deadlock problem, fine-grained locks are tedious for programming, while
coarse-grained locks often suffer from poor performance due to lack of concurrency.

To avoid the deadlock problem as well as to increase concurrency, Transactional
Memory (TM) [14,20] was proposed for shared-memory programming models. In
TM, atomic access to shared objects is achieved through transactions. All threads
can freely enter a transaction, access the shared objects, and commit the accesses
at the end of the transaction. If there are access conflicts among threads, one or
more transactions will be aborted and rolled back. TM will undo the effects of the
rolled-back transactions and restart them from the beginning. This transaction
based concurrency control is labelled as an optimistic approach [3,16] where it is
assumed nothing will go wrong and if it does go wrong deal with it later.

In terms of performance, both lock-based and TM-based approaches have their
own merits in different situations. When access conflicts are rare (i.e., the con-
tention is low), the TM-based approach has little roll-back overhead and encour-
ages high concurrency since multiple threads can access different parts of the
shared data simultaneously. In this situation, however, the lock-based approach
has little concurrency due to the sequential access to the shared data, which results
in low performance. To increase concurrency and performance, the programmer
has to break the shared data into finer parts and use a different lock for each
part. This solution using fine-grained locks often complicates the already-complex
parallel programs and could incur deadlocks.

On the other hand, when access conflicts are frequent (i.e., the contention is
high), the TM-based approach could have staggering roll-back overheads and is
not scalable due to a large number of aborts of transactions. In such a situation, it
is more effective to use the pessimistic lock-based approach to avoid the excessive
operational overheads of transactions.

In order to adaptively improve performance of applications under various con-
tention situations, we proposed a View-Oriented Transactional Memory (VOTM)
paradigm [19] that seamlessly integrates the locking mechanism and transactional
memory into the same programming model. In VOTM, shared data objects are
partitioned into “views” by the programmer according to the memory access pat-
tern of a program. The grain (size) and content of a view are decided by the
programmer as part of the programming task, which is as easy as declaring a
shared data structure or allocating a block of memory space. Each view can be
dynamically created, merged, and destroyed. The most important property for
views is that they do not intersect with each other. Before a view is accessed (read
or written), it must be acquired; after the access of a view, it must be released.
This data-centric model bundles concurrency control and data access together and
therefore relieves the programmer from controlling concurrent data access directly
with either locks or transactions. When a shared data (i.e. a view) is to be accessed,
the programmer just simply uses acquire view to inform the system that the cor-
responding view is going to be accessed. It is up to the system to decide whether
the locking mechanism should be adopted or a transaction should be started for
the concurrent access of the shared data.

Restricted Admission Control in View-Oriented Transactional Memory 3

In VOTM, we adopt a Restricted Admission Control (RAC) scheme that can
dynamically adjust the number of threads allowed to access the same view. With
the RAC scheme, a view in VOTM is restricted to be accessed by a limited number
of threads Q (called admission quota) whose value ranges from 1 to the maximum
number of threads (N). If Q is 1, the threads access the set of data objects sequen-
tially as in the lock-based approach. If Q equals N, the RAC scheme behaves like
the conventional TM systems where any thread is allowed to start a transaction
to access the data objects of the view. However, if Q is greater than 1 but smaller
than N, only Q threads are allowed to access the data objects concurrently through
transactions. If there are already Q threads accessing the data objects inside un-
committed transactions, other threads are excluded from accessing the set of data
objects and have to wait until some existing transactions commit. In addition,
RAC can flexibly adjust Q at runtime according to the contention situation, e.g.,
the number of transactional aborts, to achieve optimal performance, which will be
described in details in Section 2.

This paper has the following contributions:

First, we propose the novel Restricted Admission Control (RAC) scheme that
adapts flexibly to runtime contention situations in order to achieve optimal per-
formance for concurrent accesses to shared data objects in transactions.

Second, we propose a theoretical model for RAC to measure the contention
levels and decide when Q should be adjusted to achieve optimal performance for
TM applications. As far as we know, this is the first time that a theoretical analysis
is applied to model admission control of transactions.

Third, we evaluate the RAC model with microbenchmarks and show the model
can correctly decide if Q should be adjusted at various contention levels. Our
experiment shows that this theoretical model is general enough to help measure
the contentions for various TM systems.

The rest of the paper is organized as follows: Section 2 will present the RAC
scheme and its theoretical model; Section 3 will evaluate the RAC model with
microbenchmarks; Section 4 will discuss related work and Section 5 concludes the
paper.

2 Restricted Admission Control

The RAC scheme is implemented for every view in VOTM. Each view consists of
memory blocks that may store an entire linked list, tree or graph. Each view has
an admission quota Q that restricts the maximum number of threads accessing the
view concurrently. Before a view is accessed, the primitive acquire view is used.
If Q equals 1, acquire view is equivalent to a lock acquisition. In this case, lock
mechanism is used instead of the transaction mechanism to avoid transactional
overheads. If Q is greater than 1, acquire view will either start a new transaction
or wait according to the following RAC scheme.

Suppose a view has an admission quota Q. We assume the current number of
threads concurrently accessing the view is P . When the view is acquired through
acquire view, RAC follows the steps below:

– Compare P with Q. If P is smaller than Q, increase P by 1, start a new
transaction, and return with success.

4 Kai-Cheung Leung et al.

– If P equals Q, the calling thread is blocked until P becomes smaller than Q.

When the view is released through release view, RAC executes the following
steps:

– Try to commit the transaction. If the commit fails, abort and roll back the
transaction, decrease P by 1, and reacquire the view as shown above.

– If the commit succeeds, decrease P by 1, and then return with success.

Furthermore, RAC can dynamically adjust the admission quota Q in the fol-
lowing way according to the contention situation. The admission quota Q of each
view is initialized as the maximum number of threads (N). RAC regularly checks
the contention situation. If the contention is high, RAC will relieve the contention
of the view by halving the admission quota Q. This process can be repeated peri-
odically until Q reaches 1, in which case the concurrency control is switched to the
lock-based approach and the transaction mechanism is no longer used to access
the view. Conversely, when the contention is low, RAC will increase concurrency
by doubling Q. This process will repeat periodically until Q reaches N.

Obviously, to find out when to adjust Q is crucial to the performance of RAC.
The following theoretical analysis helps understand when RAC can outperform
conventional TM systems and when Q should be adjusted to achieve optimal
performance.

2.1 RAC vs. conventional TM

Consider a set of transactions ST = {T1, ..., Tn}, which access the same view and
are executed by N threads. The duration of transaction Ti(1 ≤ i ≤ n) is denoted
by ti and refers to the time period that Ti is executed from start to commit without
conflicts and interruptions. For simplicity of the analysis, we assume that, during
the execution of Ti, the expected number of aborts is ci and the average time
spent by an aborted transaction is di, where ci, di ≥ 0. Therefore, the expected
execution time for Ti is cidi + ti in conventional TM that has no admission control
of transactions.

Makespan is defined as the total time needed to perform all transactions [2].
Suppose that N threads are continuously executing the transactions, then the best
possible makespan for ST in conventional TM, denoted by makespanTM (ST), can
be calculated as

makespanTM (ST) =

∑n
i=1 cidi + ti

N
(1)

In RAC, Q transactions are allowed to be executed at any given time, where
1 ≤ Q ≤ N . The expected execution time for Ti is Q−1

N−1 × cidi + ti, which can be
proven as follows.

Suppose Ti aborts due to the conflict of shared memory location s accessed
by Ti′ in conventional TM. However, in RAC, if Ti is allowed to access s at a
given time, the probability that Ti′ is also allowed to access s is Q−1

N−1 , because
RAC allows only Q threads accessing s at any given time. So, the probability that
Ti has 1 abort due to the conflict with Ti′ is Q−1

N−1 . According to the binomial
distribution, the probability that Ti has k aborts (k ∈ {0, 1, ..., ci}) is p(k) =(ci
k

)
(Q−1
N−1)k(N−Q

N−1)ci−k. Therefore, the expected execution time for Ti in RAC is

Restricted Admission Control in View-Oriented Transactional Memory 5

∑ci
k=1(kdi + ti)p(k) =

∑ci
k=1 kp(k)di +

∑ci
k=1 p(k)ti = Q−1

N−1 × cidi + ti. (By the

binomial distribution,
∑ci

k=1 kp(k) = Q−1
N−1 × ci and

∑ci
k=1 p(k) = 1)

Suppose the Q threads are continuously executing the transactions in RAC,
then the makespan for ST in RAC, denoted by makespanRAC(ST), is

makespanRAC(ST) =

∑n
i=1

Q−1
N−1 × cidi + ti

Q
(2)

Therefore, the difference of makespanRAC(ST) and makespanTM (ST), de-
noted by ∆, can be obtained by Equation (1) and (2) as follows.

∆ = makespanRAC(ST)−makespanTM (ST)

=

∑n
i=1

Q−1
N−1 × cidi + ti

Q
−
∑n

i=1 cidi + ti
N

=
1

N − 1
(

1

Q
− 1

N
)(

n∑
i=1

cidi −
n∑

i=1

ti(N − 1)) (3)

Let δ =
∑n

i=1 cidi∑n
i=1 ti(N−1) . It can be derived from Equation (3) that

(a) if δ > 1, then ∆ > 0 and makespanRAC(ST) > makespanTM (ST). That
is, RAC outperforms conventional TM and the performance improvement is ∆
when δ > 1 (i.e.,

∑n
i=1 cidi >

∑n
i=1 ti(N −1)). From this condition, it can be seen

that RAC works especially well for transactions with high contention (ci can be
considered as the number of conflicts experienced by Ti), which will be verified in
our experimental results.

(b) If δ ≤ 1, then ∆ ≤ 0 and makespanRAC(ST) ≤ makespanTM (ST). That
is, when δ ≤ 1, we should set Q to N in RAC. When Q equals to N , ∆ = 0 and
RAC works the same as the conventional TM.

2.2 RAC with Q′ threads vs. Q threads

Similar to the deduction of Equation (3), the difference between makespans of RAC
using Q′ threads (makespanRAC(ST , Q

′)) and Q threads (makespanRAC(ST , Q))
is

makespanRAC(ST , Q
′)−makespanRAC(ST , Q)

=
1

Q− 1
(

1

Q′
− 1

Q
)(

n∑
i=1

ci(Q)× di(Q)−
n∑

i=1

ti × (Q− 1)) (4)

where ci(Q) and di(Q) are the expected number of aborts and the average time
spent by an abort of Ti when using Q threads in RAC.

Let δ(Q) =
∑n

i=1 ci(Q)×di(Q)∑n
i=1 ti×(Q−1) . It can be derived from Equation (4) that

(a) if δ(Q) > 1 andQ′ < Q, thenmakespanRAC(ST , Q) < makespanRAC(ST , Q
′).

That is, if δ(Q) > 1, RAC should decrease Q to reduce the execution time of the
concurrent transactions.

(b) if δ(Q) < 1 andQ′ > Q, thenmakespanRAC(ST , Q) < makespanRAC(ST , Q
′).

To reduce the execution time of the concurrent transactions, RAC should increase
Q.

In summary, the following theorem can be derived:

6 Kai-Cheung Leung et al.

Theorem 1 If δ(Q) is larger than 1, Q should be decreased; if δ(Q) is smaller
than 1, Q should be increased.

In our implementation of RAC,
∑n

i=1 ci(Q)×di(Q) is estimated with the total
CPU cycles spent in aborted transactions, and

∑n
i=1 ti is estimated with the total

CPU cycles spent in successful transactions.
Therefore, δ(Q) is estimated with Equation (5) in RAC:

δ(Q) =
CPUcyclesaborted tx

CPUcyclessuccessful tx × (Q− 1)
(5)

3 Experimental evaluation

This experiment aims at verifying the above Theorem 1 with microbenchmarks.
The experiment also shows that the RAC scheme works well in terms of dynamic
adjustment of Q. We use the microbenchmark suite Eigenbench [15] in our exper-
iment.

3.1 Eigenbench

Eigenbench models transactions using orthogonal parameters, and allows a better
understanding of which parameter contributes to a particular behaviour of the TM
system.

For example, contention in Eigenbench is controlled by adjusting the size of the
shared hot array (A1) and number of read and write accesses to the hot array in
a transaction (R1 and W1 respectively). hot array can be accessed by all transac-
tions. High contention can be modelled by large number of accesses to the hot array
and/or small hot array size (thus each element in the hot array is more likely to
be accessed by multiple concurrent transactions and have conflicts). The shared
mild array is also accessed by transactions, but each thread has its own subarray
in the mild array and each transaction can only access elements in the subarray
owned by its thread, so access of the array will not cause conflict, but will increase
transaction size.

Moreover, long transactions can be modelled with one or more of the following
features:

– reading/writing to a large range of locations in shared memory;
– many repeated accesses to the same location(s) in shared memory;
– frequent access to local memory and/or high computation load inside transac-

tions.

In Eigenbench, a transaction is modelled by a sequence of reads/writes to the
shared memory with accesses to local memory and computation (represented by a
number of NOPs) in between. A microbenchmark can also have computation and
accesses to local memory outside transactions.

Below is the pseudocode outlining the Eigenbench model:

1 shared word hot_array[A1]; /* shared array where conflict occurs,
2 accessed in tx */
3

4 shared word mild_array[A2]; /* shared array where each thread accesses

Restricted Admission Control in View-Oriented Transactional Memory 7

5 its own subarray, so does not cause
6 conflict, but still needs rollback
7 should tx be aborted */
8

9 thread_local word cold_array[A3] /* private to each thread, can be accessed
10 either inside or outside tx.
11 if accessed inside tx and tx aborted
12 then needs to roll back changed */
13

14

15 each thread:
16

17 for loops:
18 do
19 tx_start()
20 perform r1 reads and w1 writes to the shared hot_array, and
21 r2 reads and r2 writes to the shared mild_array
22 in *random order*
23 each access touches a random element (word) in
24 the shared hot_array, or in the dedicated subarray within
25 the shared mild_array
26

27 between two accesses to shared arrays, there will
28 also be r3i reads and w3i writes to the thread-local
29 cold array, and NOPi instructions
30 tx_end()
31

32 /* activities outside transactions:
33 perform r3o reads and w3o writes to the thread-local array
34 perform NOPo instructions
35 done

In Eigenbench, each thread executes loops of iterations, and each iteration
consists of a transaction, and then activities outside transactions.

In summary, Eigenbench allows us to model contentions quantitatively with
various orthogonal parameters, which is ideal for us to evaluate the RAC model.

In order to verify the theoretical RAC model, we use four Eigenbench mi-
crobenchmarks: Highcon, FutileStall, StarvingElder and StarvingWriter. Highcon
is configured by ourselves, but FutileStall, StarvingElder and StarvingWriter are
taken from [4]. Parameters of each microbenchmark are listed in Table 1.

Table 1 Eigenbench parameters for the microbenchmarks

Application N loops A1 A2 A3 R1 W1 R2 W2 R3i W3i R3o W3o NOPi NOPo
Highcon 16 400 4k 1m 8k 100 10 20 20 10 20 0 0 20k 10m
FutileStall 16 10k 256 16k 8k 80 20 10 10 0 0 0 0 0 0
StarvingElder 1 100k 1k 1m 8k 128 32 20 20 0 0 100 100 0 0

15 1m 1k 1m 8k 2 2 20 20 0 0 100 100 0 0
StarvingWriter 1 10k 32 1m 1m 0 30 0 0 500 0 0 0 0 0

15 100k 32 1m 1m 30 0 0 0 0 0 0 0 0 0

Highcon has high contention long transactions that have computation loads
both inside and outside transactions. It mimics realistic TM applications with
transactions that are computationally intensive apart from having many high-
contentious accesses to the hot array. Each thread executes 400 transactions. In
addition, this microbenchmark also has substantial computational workload out-
side transactions.

In FutileStall, transactions read from and then write to highly-contended data.
Some transactions are stalled by other transactions that eventually will abort,
and thus have futile stalls. In this microbenchmark, each thread executes 10000
transactions.

8 Kai-Cheung Leung et al.

In StarvingElder, thread 0 executes 100,000 long transactions that read/write
many locations in the hot array, while each of threads 1-15 execute 1,000,000 short
transactions that can conflict with and abort long transactions. As a result, these
long transactions will make little progress.

In StarvingWriter, thread 0 executes 10,000 long writer transactions that write
to the small hot array, while each of threads 1-15 executes 100,000 read-only
transactions that have frequent access to the hot array, thus conflict with the
writer transactions executed by thread 0. These read-only transactions will impede
progress of the long writer transactions, since the multiple readers may continu-
ously lock the same location for a long time.

3.2 Verification of Theorem 1

In this experiment, we are going to verify if Theorem 1 can correctly suggest that
the admission quota Q should be adjusted.

In the experiment, RAC is implemented over the TinySTM-1.0.0 [10] with
both its default encounter-time locking algorithm (TinySTM-ETL) and its alter-
native commit-time locking algorithm (TinySTM-CTL). These two RAC imple-
mentations are denoted as “TinySTM-ETL+RAC” and “TinySTM-CTL+RAC”
respectively. We use the two different implementations to show if the RAC model
can work with different TM algorithms. To examine the correctness of Theorem
1, Q in RAC is fixed to 1, 2, 4, 8, 12 and 16 respectively, without dynamic ad-
justment during runtime. In all tests, the number of total threads (N) is fixed
to 16. Thus the Q = 16 case is equivalent to the conventional TM that has no
restriction of admissions. In all microbenchmarks, we use only one view, which is
sufficient to verify Theorem 1. All tests are carried out on a Dell PowerEdge R905
server with four AMD Opteron 8380 quad-core processors running with 800MHz
and 16GB DDR2 memory. Linux kernel 2.6.32 and the compiler gcc-4.4 are used
during benchmarking. All programs are compiled with the optimization flag -O2
because it is more stable than -O3.

As mentioned previously, δ(Q) in Theorem 1 is estimated with Equation (5).
Perfctr-2.6.42 [22] is used to measure the CPU cycles spent in aborted transactions
and successful transactions.

For each Q, the runtime of each microbenchmark and its δ(Q) are presented in
the following tables. To verify if Theorem 1 is correct for a microbenchmark, we
compare the runtimes of Q and Q′, where Q′ < Q. If δ(Q) > 1 and the runtime of
Q is larger than the runtime of Q′, or alternatively if δ(Q) < 1 and the runtime
of Q is smaller than the runtime of Q′, then Theorem 1 is correct; otherwise it is
not quite correct.

For example, Table 2 shows the results of Highcon (on TinySTM-ETL+RAC)
at different values of Q. When Q is 16, δ(Q) is 1.25, larger than 1, which suggests
we should decrease Q according to Theorem 1. Compared with Q = 12, we find
the runtime at Q = 12 is smaller than the runtime at Q = 16. This shows Theorem
1 has correctly suggested a smaller Q should relieve the contention situation and
improve performance. Likewise, Theorem 1 is correct for Q = 12 and Q = 2.

The exceptions are Q = 4 and Q = 8. For Q = 8, δ(Q) is 0.98, slightly smaller
than 1, but the experimental result suggests that a smaller Q (4) can improve
performance. Similarly, for case Q = 4, δ(Q) is smaller than 1, but a larger Q (8)
cannot improve performance. We attribute this inaccuracy to the estimation error

Restricted Admission Control in View-Oriented Transactional Memory 9

of δ(Q). To accommodate the error, we should use a critical zone with minimum
and maximum thresholds instead of a critical point value (1). If δ(Q) is in the
critical zone, Q should not be adjusted. Our RAC implementation in Section 3.3
will suggest a suitable critical zone for δ(Q) that makes the RAC model work
correctly for all cases of the microbenchmarks.

Table 2 Highcon with ETL

Q 1 2 4 8 12 16
Runtime(s) 52.3 34.3 25.4 54.5 69.6 76.0
#abort 0 1.61k 7.17k 142k 438k 648k
#tx 6.4k 6.4k 6.4k 6.4k 6.4k 6.4k
CPUcyclesaborted tx 0 7.05G 29.7G 283G 591G 774G
CPUcyclessuccessful tx 41.0G 41.1G 41.1G 41.1G 41.1G 41.1G
δ(Q) N/A 0.17 0.24 0.98 1.30 1.25

Table 3 Highcon with CTL

Q 1 2 4 8 12 16
Runtime(s) 52.7 30.8 18.2 15.1 15.0 15.0
#abort 0 739 2.08k 3.03k 3.03k 3.03k
#tx 6.4k 6.4k 6.4k 6.4k 6.4k 6.4k
CPUcyclesaborted tx 0 4.64G 12.8G 19.1G 19.2G 19.2G
CPUcyclessuccessful tx 41.1G 41.1G 41.1G 41.1G 41.1G 41.1G
δ(Q) N/A 0.11 0.10 0.07 0.04 0.03

In Table 3 (TinySTM-CTL+RAC), the actual optimal value of Q is 16 with the
smallest runtime of 15.0s. In the table, δ(Q) is around 0.1 or smaller for all values
of Q. Therefore, RAC should keep increasing Q and use the maximum possible
value (16), which is consistent with Theorem 1.

It is worth noting that TinySTM-CTL does not cause as much false aborts
and its actual contention is small. Therefore, there is no need for RAC to restrict
admission.

Table 4 FutileStall with ETL

Q 1 2 4 8 12 16
Runtime(s) 4.21 7.04 12.4 17.8 21.9 40.3
#abort 0 690k 3.80m 9.95m 16.0G 47.3G
#tx 160k 160k 160k 160k 160k 160k
CPUcyclesaborted tx 0 5.11G 24.8G 58.2G 88.3G 242G
CPUcyclessuccessful tx 3.10G 4.01G 4.76G 5.45G 5.64G 6.25G
δ(Q) N/A 1.27 1.73 1.52 1.42 2.58

Table 5 FutileStall with CTL

Q 1 2 4 8 12 16
Runtime(s) 4.86 5.61 5.66 6.01 6.63 7.73
#abort 0 170k 507k 1.17m 1.98m 3.01m
#tx 160k 160k 160k 160k 160k 160k
CPUcyclesaborted tx 0 4.15G 12.1G 28.3G 50.8G 86.3G
CPUcyclessuccessful tx 3.98G 4.01G 4.23G 4.72G 5.38G 6.29G
δ(Q) N/A 1.03 0.95 0.86 0.86 0.91

From Table 4 and 5, we can see the actual optimal Q for FutileStall on
TinySTM-ETL+RAC and TinySTM-CTL+RAC is 1. When Q is between 2 and
16 in TinySTM-ETL+RAC, δ(Q) is larger than 1. Thus Q should be kept decreas-
ing to the smallest value (1) which performs the best. Therefore, in these cases,
Theorem 1 is correct.

10 Kai-Cheung Leung et al.

However, for FutileStall on TinySTM-CTL+RAC in Table 5, when Q is be-
tween 4 and 16, δ(Q) is slightly smaller than 1, but decreasing Q can still further
reduce runtime. This inaccuracy can be again attributed to the estimation error
of δ(Q).

Table 6 StarvingElder with ETL

Q 1 2 4 8 12 16
Runtime(s) 354.0 180.2 99.3 51.8 47.4 46.6
#abort 0 149k 593k 2.25m 3.02m 3.03m
#tx 15.1m 15.1m 15.1m 15.1m 15.1m 15.1m
CPUcyclesaborted tx 0 2.82G 10.8G 35.5G 45.0G 45.5G
CPUcyclessuccessful tx 256G 259G 262G 264G 265G 266G
δ(Q) N/A 0.011 0.013 0.019 0.016 0.011

Table 7 StarvingElder with CTL

Q 1 2 4 8 12 16
Runtime(s) 348.0 178.5 99.4 56.0 51.3 51.2
#abort 0 82.2k 359k 1.04m 1.04m 1.04m
#tx 15.1m 15.1m 15.1m 15.1m 15.1m 15.1m
CPUcyclesaborted tx 0 3.28G 14.9G 37.6G 37.7G 37.7G
CPUcyclessuccessful tx 252G 256G 259G 264G 264G 264G
δ(Q) N/A 0.013 0.019 0.021 0.013 0.010

Table 8 StarvingWriter with ETL

Q 1 2 4 8 12 16
Runtime(s) 29.0 24.8 22.3 21.8 21.8 21.8
#abort 0 3.76m 9.68m 10.6m 10.6m 10.6m
#tx 15.1m 15.1m 15.1m 15.1m 15.1m 15.1m
CPUcyclesaborted tx 0 2.77G 6.73G 7.38G 7.39G 7.39G
CPUcyclessuccessful tx 20.5G 20.7G 20.8G 20.8G 20.8G 20.8G
δ(Q) N/A 0.13 0.11 0.051 0.032 0.023

Table 9 StarvingWriter with CTL

Q 1 2 4 8 12 16
Runtime(s) 29.0 19.9 19.2 19.2 19.2 19.2
#abort 0 2.82k 3.27k 3.41k 3.43k 3.44k
#tx 15.1m 15.1m 15.1m 15.1m 15.1m 15.1m
CPUcyclesaborted tx 0 11.1m 15.6m 20.5m 21.6m 22.1m
CPUcyclessuccessful tx 20.5G 20.6G 20.6G 20.6G 20.6G 20.6G
δ(Q) N/A 0.0005 0.0002 0.0001 0.0001 0.0001

Long transactions in StarvingElder and writers in StarvingWriter can have
poor progress. However, as shown in Table 6, 7, 8 and 9, the overall contention
in both cases on TinySTM-ETL+RAC and TinySTM-CTL+RAC is not suffi-
ciently high to justify admission control, as other short transactions still make
good progress. Since δ(Q) is much smaller than 1 with all values of Q and the
runtime at Q = 16 is the smallest in all cases, Theorem 1 correctly predicts that
it is inappropriate to restrict admission of transactions.

In conclusion, Theorem 1 based on the theoretical RAC model can correctly
predicts whether Q should be adjusted in most cases for both TinySTM-ETL
and TinySTM-CTL. However, for a few cases like Highcon on TinySTM-ETL and
FutileStall on TinySTM-CTL, when δ(Q) is slightly smaller than 1, decreasing Q
can still improve performance. This discrepency from Theorem 1 can be attributed
to the estimation error of δ(Q). To reduce (or avoid) the estimation error, we use
a critical zone introduced in the following implementation of RAC.

Restricted Admission Control in View-Oriented Transactional Memory 11

3.3 Performance of the RAC scheme

We use Theorem 1 to guide the dynamic adjustment of Q in RAC. However, due
to estimation error, the previous results indicate that even when δ(Q) is slightly
smaller than 1, contention can still be high, and performance can still be improved
by decreasing Q. For the same reason, conversely δ(Q) would need to be much
smaller than 1 to indicate low contention to justify increasing Q. As suggested
previously, to accommodate the estimation error of δ(Q), we need to use a critical
zone instead of a critical point for δ(Q).

In our implementation of RAC, we use a critical zone with two values MAX
and MIN . Q will be decreased when δ(Q) > MAX; and Q will be increased when
δ(Q) < MIN . MAX and MIN are set to 0.8 and 0.05 respectively based on our
experimental results.

Additionally, in our implementation, to eliminate cache flushing overheads on
incrementing the shared counter P (number of threads holding the view) in the
RAC metadata, when it is clear that admission control to the view is unnecessary
because of the following low contention condition, the RAC mechanism will be
disabled.

– 20000 transactions are executed since Q is set to N , and
– δ(Q) < MIN

After the RAC mechanism of the view is disabled, access to the view will no
longer be restricted until the contention situation of the view changes.

Table 10 and 11 show the performance of the RAC scheme for the previous mi-
crobenchmarks. We compare the following three implementations: RAC with the
above dynamic adjustment of Q (denoted as RAC in Table 10 and 11), no admis-
sion control (Q = 16, denoted as Q16), and RAC with static Q whose value is set
to the optimal value of Q (denoted as OPT). We compare RAC with OPT to verify
whether the RAC scheme can find the optimal Q in practice. Also we compare
RAC with Q16 to show the performance improvement of RAC over conventional
TM. Note that, in the tables, “Q(RAC)” is the Q picked up by the RAC with
dynamic adjustment, and “Q(OPT)” represents the Q with which RAC works the
best.

In all microbenchmarks, we use only one view, though multiple views would
make RAC perform even better, as demonstrated in [19].

Table 10 Performance of Adaptive RAC in TinySTM-ETL

Microbenchmark time(s) Q #aborts time(s) #aborts time(s) Q #aborts
(RAC) (RAC) (RAC) (Q16) (Q16) (OPT) (OPT) (OPT)

Highcon 25.6 4 9.96k 76.0 648k 25.4 4 7.17k
FutileStall 3.23 1 7.98 40.3 47.3m 4.21 1 0
StarvingElder 47.0 16 3.05m 46.8 3.02m 46.8 16 3.02m
StarvingWriter 22.1 16 33.2m 21.8 10.6m 21.8 16 10.6m

Table 11 Performance of Adaptive RAC in TinySTM-CTL

Microbenchmark time(s) Q #aborts time(s) #aborts time(s) Q #aborts
(RAC) (RAC) (RAC) (Q16) (Q16) (OPT) (OPT) (OPT)

Highcon 15.0 16 2.98k 15.0 3.01k 15.0 16 3.01k
FutileStall 3.33 1 46.5k 7.73 3.01m 4.86 1 0
StarvingElder 51.5 16 1.05m 51.2 1.05m 51.2 16 1.05m
StarvingWriter 19.2 16 3.83k 19.2 3.80k 19.2 16 3.80k

12 Kai-Cheung Leung et al.

From Table 10 and 11, it can be seen that in all microbenchmarks on both
TinySTM-ETL and TinySTM-CTL, RAC has correctly settled to the optimal
Q values. For example, in Highcon on TinySTM-ETL, RAC correctly settled to
Q = 4 and has a 200% improvement over conventional TM (Q16). The RAC
scheme settles to the correct Q value very quickly, as the runtime of RAC (25.6) is
similar to the runtime of OPT (25.4). Also the number of aborts in RAC (9.96k)
is only slightly more than OPT (7.17k).

In FutileStall, RAC has correctly settled to Q = 1 to in both TinySTM-ETL
and TinySTM-CTL, and the runtimes in both cases (3.23s and 3.33s respectively)
are shorter than OPT (4.21s and 4.86s respectively). This improvement is at-
tributed to the turn-off of the transactional mechanism in RAC when Q reaches
1.

In StarvingElder, StarvingWriter and the TinySTM-CTL version of Highcon,
the contention is not high enough to justify restricting admission and RAC has
correctly stayed at Q = 16. The runtime of RAC is similar to OPT in all cases.

From the above results, it can be seen that RAC based on Theorem 1 can
quickly choose the optimal Q in different TM algorithms, and can therefore im-
prove performance of TM applications with high contention. Our previous work [19]
showed RAC was also able to improve performance of real TM applications.

4 Related work

Approaches to concurrency control in TM can be classified into three types: in-
transaction conflict resolution, transactional scheduling, and adaptive locks.

4.1 In-transactional conflict resolution

In-transaction conflict resolution aims to resolve conflicts effectively to reduced
wasted work of aborted transactions. All in-transaction conflict resolution al-
gorithms, including both encounter-time locking (DSTM [13,25], SXM [11] and
McRT-STM [24]) and commit-time locking (TL-2 [7] and NOrec [6]) algorithms,
resolve conflicts within a transaction only after these conflicts have been detected,
but threads are still freely admitted into transactions. Therefore, the aborts can-
not be stemmed in high contention and work is still wasted by transactions that
eventually aborts, as shown in our experimental results.

4.2 Transactional scheduling

Transactional scheduling can control the admission of transactions when con-
tention is high. It can prevent conflicts before they occur and therefore reducing
wasted work on aborted transactions. For example, transaction scheduling algo-
rithms such as [28] use a thread-local contention score. When a thread experiences
high contention, it queues the starting transaction to a central scheduler, which
will execute queued transactions serially. [8] adopts a similar approach, except
when a thread experiences high contention it uses a heuristic approach that pre-
dicts read and write sets of the starting transaction using read and write sets
of previous transactions of the threads. If any address in the predicted read and
write sets is being written by any other currently executing transactions, then the

Restricted Admission Control in View-Oriented Transactional Memory 13

starting transaction will be queued to be executed serially. Otherwise, the trans-
action executes immediately. This algorithm relies on heuristic prediction of what
will be read/written in the starting transactions. The admission control algorithm
in [1] also adopts a similar approach. This family of transactional scheduling algo-
rithms works orthogonally with the in-transaction conflict resolution algorithms
mentioned above.

However, the above transactional scheduling algorithms use empirical thresh-
olds to decide contention level. There is no theoretical model to guide the selection
of those threshold values, as we discussed in this paper. As far as we know, the
theoretical RAC model proposed in this paper is the first model that provides
theoretical guidance to transactional concurrency control.

Furthermore, as discussed in [19], all transaction scheduling algorithms de-
scribed above treat the entire TM with the same scheduling decision. Therefore,
access to a low-contention shared object can be unreasonably restricted due to
other high-contention shared objects in TM. Also the statistics collected for the
entire TM are not as accurate as those collected per view basis, which will enlarge
the estimation error of δ(Q) in the RAC model. However, RAC in VOTM treats
each view individually and the estimation of δ(Q) is thus more accurate.

4.3 Adaptive locks

The speculative lock elision (SLE)-based model [23] was proposed to avoid unnec-
essary exclusive accesses in lock-based programs. An elidable lock can be acquired
“speculatively” (using TM) or “non-speculatively” (using mutex). At any time,
an elidable lock can be acquired speculatively by multiple threads, but only one
thread can hold an elidable lock non-speculatively at any time.

The adaptive lock model in [27] has a similar approach, except a thread trying
to acquire the lock in mutex mode must wait until all existing threads holding the
lock in transaction mode to finish.

Like VOTM, both SLE and adaptive lock models have separate access control
on each elidable lock, to ensure restrictions placed by the system on locks with
high contention will not unnecessarily affect concurrency of accessing other elidable
locks with low contention. However these models either allows all threads to hold
the elidable lock in speculative mode, or exclusive access to one thread during
non-speculative (mutex) mode, yet as shown in Sections 3 and 2, there are some
cases where the optimal admission quota of a lock/view is actually between 1 and
N . Therefore, the RAC scheme can achieve a superior performance by finding out
the optimal admission quota to achieve maximal concurrency rather than only
choosing between the two extremes – exclusive access to one thread or admitting
all threads.

5 Conclusions and future work

As shown in the microbenchmark results, our theoretical RAC model can mostly
provide correct guidance to transactional concurrency control. The RAC scheme
based on the model can improve performance of TM regardless of which underlying
TM algorithm is used. In any TM algorithms, there will be situations where the
contention becomes very high (the number of aborts becomes much larger than

14 Kai-Cheung Leung et al.

the number of transactions). In these situations, RAC will dynamically adjust
the number of threads admitted to a view to control contention, thereby reduc-
ing works wasted by aborted transactions and improving progress. Experimental
results show that RAC has superior performance to conventional TM because of
the ability of RAC controlling admission and switching between TM and locking,
whereas conventional TM has a performance issue when the contention is high and
lock-based approach only works well in fine-grained locking but poorly in coarse-
grained locking [19]. Therefore, the RAC scheme enables VOTM to have better
performance than the conventional TM and better convenience (and sometimes
better performance) than lock-based programming.

One issue with RAC is blocking of threads by RAC when Q is smaller than
N. This blocking seems to violate the lock-free or obstruction-free feature of TM
systems [12]. Even though this feature is arguably necessary [9], RAC can quickly
resolve this kind of blocking when the contention becomes low and thus Q is in-
creased up to N, as long as Q does not become 1. If necessary, RAC can completely
avoid blocking by using transactions even when Q equals 1, though it will lose some
performance gain. In this way, if the system discovers that blocking is too long,
the blocking can be easily lifted by increasing Q. Actually, in normal situations,
the blocking in RAC is not worse than the live-locking in TM when transactions
abort each other without progress under high contention.

As a future work, we will further investigate how to reduce the estimation error
of δ(Q) in the RAC model. We will also investigate the performance of the RAC
scheme for multiple views, which we believe is another strength of VOTM.

References

1. Ansari, M., Kotselidis, C., Jarvis, K., Luján, M., Watson, I.: Adaptive concurrency control
for transactional memory. Tech. rep., University of Manchester (2007)

2. Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention manage-
ment as a non-clairvoyant scheduling problem. Algorithmica 57, 44–61 (2010). URL
http://dx.doi.org/10.1007/s00453-008-9195-x. 10.1007/s00453-008-9195-x

3. Bernstein, P., Goodman, N.: Concurrency control in distributed database systems. ACM
Computer Survey 13(2), 185–221 (1981)

4. Bobba, J., Moore, K.E., Volos, H., Yen, L., Hill, M.D., Swift, M.M., Wood, D.A.:
Performance pathologies in hardware transactional memory. In: Proceedings of the
34th annual international symposium on Computer architecture, pp. 81–91. ACM,
New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1250662.1250674. URL
http://doi.acm.org/10.1145/1250662.1250674

5. Cascaval, C., Blundell, C., Michael, M., Cain, H.W., Wu, P., Chiras, S., Chatterjee, S.:
Software transactional memory: Why is it only a research toy? Queue 6, 46–58 (2008).
DOI http://doi.acm.org/10.1145/1454456.1454466

6. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing own-
ership records. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 67–78. ACM, New York, NY, USA (2010).
DOI http://doi.acm.org/10.1145/1693453.1693464

7. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Proceedings of the 20th
International Symposium on Distributed Computing (2006)

8. Dragojević, A., Guerraoui, R., Singh, A.V., Singh, V.: Preventing versus curing: avoiding
conflicts in transactional memories. In: Proceedings of the 28th ACM Symposium on
Principles of Distributed Computing, pp. 7–16. ACM, New York, NY, USA (2009). DOI
http://doi.acm.org/10.1145/1582716.1582725

9. Ennals, R.: Software transactional memory should not be obstruction-free. Tech. rep.,
Intel Corporation (2006)

Restricted Admission Control in View-Oriented Transactional Memory 15

10. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based software
transactional memory. In: Proceedings of the 13th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pp. 237–246. ACM, New York, NY, USA
(2008). DOI http://doi.acm.org/10.1145/1345206.1345241

11. Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic contention management. In: Proceed-
ings of the 19th International Symposium on Distributed Computing, pp. 26–29. LNCS,
Springer (2005)

12. Guerraoui, R., Kapalka, M.: On obstruction-free transactions. In: 20th ACM Symposium
on Parallelism in Algorithms and Architectures (2008)

13. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory
for dynamic-sized data structures. In: Proceedings of the 22nd annual symposium on
Principles of Distributed Computing, pp. 92–101. ACM, New York, NY, USA (2003).
DOI http://doi.acm.org/10.1145/872035.872048

14. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free
data structures. SIGARCH Computer Architecture News 21, 289–300 (1993). DOI
http://doi.acm.org/10.1145/173682.165164

15. Hong, S., Oguntebi, T., Casper, J., Bronson, N., Kozyrakis, C., Olukotun,
K.: Eigenbench: A simple exploration tool for orthogonal tm characteris-
tics. In: Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC’10), pp. 1–11. IEEE Computer Society, Washington,
DC, USA (2010). DOI http://dx.doi.org/10.1109/IISWC.2010.5648812. URL
http://dx.doi.org/10.1109/IISWC.2010.5648812

16. Kung, H., Robinson, J.: On the optimistic methods for concurrency control. ACM Trans-
actions on Database Systems 6(2), 213–226 (1981)

17. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Commun.
ACM 17(8), 453–455 (1974). DOI http://doi.acm.org/10.1145/361082.361093

18. Larus, J.R., Rajwar, R.: Transactional Memory. Synthesis Lectures on Computer Archi-
tecture. Morgan and Claypool (2007)

19. Leung, K., Huang, Z.: View-oriented transactional memory. In: The Fourth International
Workshop on Parallel Programming Models and Systems Software for High-end Comput-
ing, in Proceedings of the 40th International Conference on Parallel Processing (2011)

20. Lomet, D.B.: Process structuring, synchronization, and recovery using atomic actions. In:
ACM Conference on Language Design for Reliable Software, pp. 128–137 (1977)

21. Peterson, G.: Myths about the mutual exclusion problem. Information Processing Letters
12(3), 115–116 (1981)

22. Pettersson, M.: The Perfctr Linux Performance Monitoring Counters Driver. Uppsala
University (2004)

23. Roy, A., Hand, S., Harris, T.: A runtime system for software lock elision. In: Proceed-
ings of the 4th ACM European Conference on Computer Systems, pp. 261–274. ACM,
New York, NY, USA (2009). DOI http://doi.acm.org/10.1145/1519065.1519094. URL
http://doi.acm.org/10.1145/1519065.1519094

24. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-STM:
a high performance software transactional memory system for a multi-core runtime.
In: Proceedings of the eleventh ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pp. 187–197. ACM, New York, NY, USA (2006). DOI
http://doi.acm.org/10.1145/1122971.1123001

25. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic software
transactional memory. In: M.K. Aguilera, J. Aspnes (eds.) Proceedings of the Twenty-
Fourth Annual ACM Symposium on Principles of Distributed Computing, pp. 240–248.
ACM (2005). DOI http://doi.acm.org/10.1145/1073814.1073861

26. Tanenbaum, A., Steen, M.: Distributed Systems: Principles and Paradigms, Chapter 5.
Prentice Hall (2002)

27. Usui, T., Behrends, R., Evans, J., Smaragdakis, Y.: Adaptive locks: Combining transac-
tions and locks for efficient concurrency. In: Proceedings of the 18th International Con-
ference on Parallel Architecture and Compilation Techniques. IEEE Computer Society,
Washington, DC, USA (2009)

28. Yoo, R.M., Lee, H.H.S.: Adaptive transaction scheduling for transactional mem-
ory systems. In: Proceedings of the Twentieth Annual Symposium on Par-
allelism in Algorithms and Architectures, pp. 169–178. ACM, New York,
NY, USA (2008). DOI http://doi.acm.org/10.1145/1378533.1378564. URL
http://doi.acm.org/10.1145/1378533.1378564

