Separable permutations

M. Albert, M. Atkinson, V. Vatter

Department of Computer Science, University of Otago

BCC2011

BLMS 2011, doi: 10.1112/blms/bdr022
A separable permutation

\[3\ 5\ 4\ 1\ 2\ 7\ 8\ 6\ 9\]
A separable permutation

3 5 4 1 2 7 8 6 9
A separable permutation

3 5 4 1 2 7 8 6 9
A separable permutation

3 5 4 1 2 7 8 6 9
Two operations on permutations

\[\alpha \oplus \beta = \begin{array}{cc} & \beta \\ \alpha & \end{array} \]

\[\alpha \ominus \beta = \begin{array}{cc} \alpha & \\ & \beta \end{array} \]

The separable permutations, \(S \), are the closure of \(\{1\} \) under \(\oplus \) and \(\ominus \).
Observations about \mathcal{S}

- If π is separable, and you erase some points from its graph the resulting permutation is also separable (\mathcal{S} is a permutation class).
- Every permutation of length ≤ 3 is separable, only two of length four are not (2413 and 3142).
- A permutation is separable if and only if it contains no four element subsequence whose relative ordering matches 2413 or 3142 (i.e. it avoids these two permutations).
- The separable permutations are enumerated by the large Schröder numbers:
 $$S(t) = \frac{1 - t - \sqrt{1 - 6t + t^2}}{2t}.$$

- Every subclass of \mathcal{S} has an algebraic generating function of degree a power of 2 over $\mathbb{Q}(t)$.
Special subclasses of S

- The class S is the smallest solution of the equation:

$$S = S \oplus S = S \ominus S.$$

- We get four different classes by changing one of the terms on the right hand side to 1 (i.e. $\{1\}$)

$$A = A \oplus A = A \ominus 1,$$
$$B = B \oplus B = 1 \ominus B,$$
$$C = C \oplus 1 = C \ominus C,$$
$$D = 1 \oplus D = D \ominus D.$$

- These turn out to be the four classes defined by avoiding a single non-monotone permutation of length 3.

- Each is enumerated by the Catalan numbers.
One more class

- The class \mathcal{X} is the smallest class satisfying:

$$\mathcal{X} = 1 \oplus \mathcal{X} = \mathcal{X} \oplus 1 = 1 \ominus \mathcal{X} = \mathcal{X} \ominus 1.$$

- It has a rational generating function:

$$X(t) = \frac{x - 2x^2}{1 - 4x + 2x^2}.$$

- It is also defined as the set of permutations avoiding all of $2143, 2413, 3142, 3412$.

- Any, and only, permutations in \mathcal{X} can be drawn up to rescaling of axes on the lines $y = \pm x$.

Some important concepts

- Permutations are ordered by *involvement*, where $\alpha \leq \beta$ if there is a subsequence of β with the same relative ordering as α.
- A class is *partially well ordered* if it contains no infinite antichain of permutations.
- A class is *atomic* if it has the joint embedding property (i.e. for any α, β in the class, there is a π which involves both).
- A class is *strongly rational* if it, and all of its subclasses have rational generating functions.
- An *inflation* of a permutation is obtained by replacing each of its elements by permutations. The notation $\mathcal{A}[\mathcal{B}]$ represents the set of all inflations of elements of \mathcal{A} by elements of \mathcal{B}.
Results

Theorem

If U is a strongly rational class then so is $X[U]$.

Theorem

If T is a subclass of S then either T is strongly rational, or it contains one of the four classes A, B, C, D.

The proof is a minimal counterexample argument. If such a counterexample existed it would have to be atomic. In that case, we can prove that $T = X[U]$ for some proper subclass U of T, yielding a contradiction.