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Abstract—We present a model based contour tracing approach
to the problem of automatically segmenting a Scanning Electron
Microscope image of red blood cells. We use a second order
polynomial model and a simple Bayesian approach to ensure
smooth boundaries, and a postprocess ellipse fitting procedure to
cull noise contours. Of all contours detected, 95.7% are correct,
with a 0.6% false negative rate, and 4.3% false positive rate on
100 sample images involving more than 11000 red blood cells.

I. INTRODUCTION

There is considerable evidence indicating that erythrocyte
(red blood cell, RBC) deformability is an important deter-
minant in the filterability of blood and subsequently in the
pathology of several diseases including Huntington’s disease,
Myalgic Encephalomyelitis (ME) and Multiple Sclerosis (MS)
[1, 2, 16, 17, 12, 15]. Further, there is significant evidence
indicating the shape of erythrocytes is directly related to its
deformability and hence its filterability [12, 14]. The difficulty
of moving the results of these studies from the laboratory
to clinical diagnosis or indeed measuring the effectiveness of
treatments is largely due to the large amount of tedious work
required to measure the distribution of different erythrocyte
cells from a sample. The aim of this project is to automatically
estimate the distribution of erythrocyte shapes from scanning
electron microscope (SEM) images. This paper presents the
result of the first part of this project - namely the segmentation
of blood cells from an SEM image.
Figure 1 shows a typical example of the type of image

we are dealing with. The blood was obtained and processed
following the protocol of [12]. The immediate fixation of the
blood upon drawing is extremely important as erythrocytes
which are not immediately fixed tend to change morphology
[13]. Images were captured at 600 times magnification using
a scanning electron microscope. There are several things to
notice about the images that make our problem unique. On
the positive side, the images are of very good quality. On
the negative side, the blood cells are highly overlapping and
edge information on the inside of a cell is often just as
strong as edge information between two overlapping cells.
Further, although most cells are strongly elliptical with smooth
boundaries, some cells are not, and it is this latter class that
is of special interest in diagnosing and treating disease states.
It is the problem of dealing with overlapping cells and variant
morphologies that makes our problem interesting and different
from previous work in this area.

Fig. 1. A typical SEM image of red blood cells. Note that the light gridlines
visible on the image were added for the sake of manual counting. These
lines are removed by interpolating between adjacent lines prior to running the
contour tracer algorithm.

II. PREVIOUS WORK

Segmentation is one of the major problems in image analy-
sis and considerable research has been performed in trying to
solve this problem including methods of segmenting various
types of cells or biological images. Aside from very simple
techniques such as thresholding or basic edge detection, there
are two main approaches to segmentation — region based or
edge based.
For region based methods, the prototypical approach is

based on morphological operators and watersheds [7, 3].
Malpica et al. [7] describe an algorithm that segments clustered
fluorescence microscopy based analytical cytology images
using a watershed algorithm and simple morphological op-
erators. Their method works quite well but the images are
very different to the quality of our own, and it is assumed
that neighbouring cells are adjacent rather than overlapping.
Di Ruberto et al. [3] describe a method for analysing and
recognising malarial red blood cell light microscopy images
using morphological operators and a watershed algorithm. Of
most relevance to our problem is the method by which they
process clustered or overlapping cells to detect individual cells.
A morphological opening operation is performed to enhance
boundaries followed by a standard watershed algorithm. The
resulting segments are considered to be individual cells. Al-
though producing good results for their application, the RBC



contours produced by their method are quite noisy. This is
probably also due to the nature of the images, where RBCs are
semi-transparent and therefore boundaries for clustered cells
are difficult to locate. Since our images are cleaner in general,
and the image gradients are stronger, we have focused more
on edge based techniques than region based ones.
For edge based methods, typical approaches in increasing

levels of complexity include model fitting [6], deformable
templates [5, 1], active contours or level sets [8], and a
combination of level sets and watersheds [10, 9].
Jiang and Yang [6] describes a method for finding elliptical

cell boundaries using an evolutionary tabu search. The search
method is used to improve the localisation of ellipses in
an image - points to match are found using Canny’s edge
detection algorithm. Although their method works quite well,
they did not include any images with overlapping or clustered
cells (which would violate the elliptical condition). We have
also experimented with directly finding ellipses in an RBC
image (using the method of [4]), but found that overlapping
cells proved too difficult without having performed prior
segmentation.
Garrido and de la Blanca [5] describe a method for finding

approximately elliptical cell boundaries using a generalised
Hough transform combined with a deformable template model.
First, edges are detected in the image using Canny’s edge
detector. Then junction points are removed from the edges
and straight line segments extracted. The line segments are
used to find circular shapes using a generalised Hough trans-
form, which informs a deformable template for locating more
accurate boundaries. Reasonably good results are obtained,
although again overlapping cells are minimal in their image
set.
McInerney and Terzopoulos [8] describe topology adaptive

snakes. There are two stages to this method - the first is the
usual snakes method using a simple Euler integration scheme.
The second stage consists of reparameterising the T-snake by
defining new nodes of the snake as those points where the
snake crosses a regular triangular grid of the image. The use
of the regular grid allows for consistent rules for changing the
topology of the snake. Unfortunately, like all snake algorithms,
it requires careful setting of inflationary/deflationary forces so
that the contour stops at significant edges in the image but
ignores insignificant ones. The method has not been tested on
cell images and it’s utility on images with many objects is
untried.
Park and Keller [10] describe an algorithm that combines

watershed segmentation and active contours to segment white
blood cells in bone marrow images. Their method works by the
user manually specifying multiple initial boundary contours,
which are then expanded based on the watershed transforma-
tion to form “snake zones” in which the active contour is
limited to remain. A global optimum within the snake zone is
then found using a dynamic programming approach. The paper
reports more accurate results than standard snakes, but because
of the requirement for initial placement, it is unsuitable for our
application (which includes hundreds of cells).

Nilsson and Heyden [9] describes a method for segmenting
dense white blood cell clusters from peripheral blood or bone
marrow light microscopy smear images. Their method uses a
combination of level-set techniques and the watershed algo-
rithm. The speed function used in their approach is designed
specifically for the procedure used to stain the smear images
and is therefore not directly usable for our problem. Also,
the nature of smear images means that cell clusters do not
generally include overlapping cells, but rather adjacent cells
are squashed together. Clearly such a preparation method is
inappropriate for an application for which the actual shape of
the cell is important.
Bronkorsta et al. [1] describe a method for measuring the

deformability of red blood cells directly using deformable
templates. Optical traps are used to physically deform red
blood cells and how quickly they revert back to a natural
shape is used as a proxy for the deformability of the cell.
The image analysis outlined in [1] is not applicable in our case
due to the different imaging environment (capturing a video of
deforming cells), but the application is the same. Our approach
can be seen as a direct competitor to the method of [1] in
that we are trying to solve the same problem (determine the
filterability of blood by measuring attributes of erythrocytes),
but our methods are very different.
As far as the authors are aware, this is the first attempt to

segment scanning electron microscope images of erythrocytes.
Many of the aforementioned methods are potentially applica-
ble to our problem, but most do not consider the problem of
overlapping cells (as opposed to closely neighbouring/adjacent
cells), which is our main problem. Given the nature of the
images we are dealing with (good contrast), we have adopted
a simpler approach to many of the aforementioned techniques.

III. METHOD

We are interested in estimating the distribution of different
erythrocyte shapes from SEM images. The SEM images were
acquired on fine grain film at a magnification of 600 in an
ETEC Autoscan electron microscope at 20kV. Further details
on sample preparation can be obtained from [12]. The signal-
to-noise ratio of the images is approximately, SNR = 13,
where SNR is calculated as the mean of a foreground cell
divided by the standard deviation of a background region.
Since it is the distribution that is important, rather than an exact
count from a particular slide, we can make some simplifying
assumptions. We assume that the distribution of overlapped or
obscured cells is identical to the overall distribution. Therefore
we can concentrate on detecting and recognising the top-most
cells only, and ignore all cells which are obscured. This has the
further advantage of making the classification problem easier.
For the sake of simplicity and ease of implementation,

we opt for a contour tracing approach. Such an approach
allows us to view contour detection as a sequential problem,
negotiating perceived problem areas one at a time. A simple
contour trace would be a greedy trace, constantly following
the highest possible gradient until the traced path intersects
itself. However, this approach suffers from problems caused
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Fig. 2. Contour tracing results on overlapping cells. (a) source image, (b)
gradient map, (c) results of greedy contour tracer, (d) results of guided contour
tracer

by overlapping cells. Figure 2(a) and 2(b) show a pair of
overlapping cells and the resulting gradient magnitude map.
Since the cells are situated on a dark background, the change
in brightness between a cell and the background will be
much higher than the change in brightness between two cells.
Consequently, edges separating the cell from its background
are much clearer than those separating cell from cell. Junction
points between the edges of overlapping cells also lead to
gaps of low gradient intensity in edges that show on the
gradient map. This results in unsatisfactory contours when
using a simple greedy contour tracer, as seen in figure 2(c).
For comparison purposes, figure 2(d) shows the same two cells
as traced by our method.
These problems stem from the fact that a greedy contour

tracer sees the gradients directly adjacent to the most recent
point in the path (called the focus point for the remainder of
this paper) as the only factor in determining the probability
of the cell contour continuing in a particular direction. The
method presented in this paper avoids this problem by deter-
mining that probability using both gradient values close to the
focus point and an a priori probability distribution based on
the shape of the traced path so far. The tracing algorithm can
be divided into four steps:
1) Calculate a gradient magnitude map
2) Select starting points for traces
3) Trace the contours
4) Verify and cull the detected contours

A. Gradient map and starting point selection
Because SEM images are monochrome, we need not worry

about colour information, only brightness. The gradient map,
G, is calculated using a simple finite difference approximation
with the two convolution operators (−1, 1) and (−1, 1)T . The
images we use have very little noise, so smoothing was not

necessary, although in higher noise images, smoothing would
be required. Any reasonable gradient estimation could be used.
The gradient map is thresholded (t = 80) to produce a set of
high-gradient pixels. The value of t is not critical but should be
low enough to produce a starting point on each cell boundary.
We use all pixels with |G| > t as potential starting points,
resulting in a single cell possibly being traced multiple times,
but maximising the chance of detecting each cell. A post-
process is used to group multiply detected cells.

B. Tracing contours

The tracing problem is formulated in a simple Bayesian
tracking framework. We wish to locate the set of all unob-
scured blood cell contours {Ci}, where each Ci = x0:Ni =
{x0..xNi} consists of a set of image points, xj , forming a
closed contour. Given a starting point x0, the problem is to
iteratively build the contour Ci until a loop is formed. At each
stage in the decision process, we wish to find the point xj+1

that maximises

p(xj+1|x0:j , G) =
p(G|x0:j+1)p(xj+1|x0:j)

p(xo:j |G)
.

We make several simplifying assumptions: the sequence x0:j

is fixed and therefore can be factored out of the first term in
the numerator, and the denominator becomes a constant; the
second term is estimated locally rather than globally to allow
for deviations in the local shape of the cell. These assumptions
leave us with the following:

p(xj+1|x0:j , G) ∼ p(G|xj+1)p(xj+1|x(j−nl):j)

where nl is the size of the history window. We recast this
problem so that we are seeking the direction in which to make
the next step based on the current direction of motion. That
is, choose θ to maximise:

p(θ|x0:j , G) ∼ p(G|θ)p(θ|x(j−nl):j). (1)

The first term in Equation 1 is the data dependent term and
the second is the model dependent term.
The SEM image of a blood cell is approximately elliptical,

at least in a global sense, but there are local variations that
are often far from elliptical, and hence an ellipse model is
inappropriate to use in the tracing algorithm. Locally the edge
of a blood cell may be modeled as a second degree polynomial
except in rare pathological cases. Least squares is used to
fit a second degree polynomial to the x(j−nl):j points in the
history window. The tangent to the polynomial, θ t, defines the
preferred step direction or model prior:

p(θ|xj−nl:j) ∼ c cos(θ − θt), (2)

where c is an empirically determined constant chosen to prefer
a new point that maintains the current direction of curvature:
c = 1.7 if it lies on the same side of the tangent line as the
fitted curve and c = 1.0 if it lies on the opposite of the tangent
line.



The data dependent term is simply the sum of the gradient
magnitude in the direction of θ — in effect a linearisation of
the expected model:

p(G|θ) ∼
l∑

m=1

G(xj + mui), (3)

where l is the look ahead factor and l = 5 in our implemen-
tation, ui = (cos θ, sin θ)T is the unit vector in the direction
of θ. Figure 3 shows a visualisation of the distribution p(G|θ)
at a junction point in the image.
Combining Equation 2 and Equation 3 gives the posterior

distribution of θ (Equation 1). We choose θ̂ as the MAP
estimate of Equation 1, from which we choose xj+1:

xj+1 = #xj + (cos θ̂ + 0.5, sin θ̂ + 0.5)T $.

The final tracing algorithm is very simple and is given in Algo-
rithm 1. The maximum contour length, Lm, in our experiments
is 250 pixels, and was chosen empirically to ensure all valid
cells could be found. Strictly speaking, a maximum length
is not necessary as other processes would cull any incorrect
tracings, but was chosen to terminate a trace that was clearly
not a cell. One could embed this process in the machinery
of a Kalman filter, or particle filter, using the JetStream [11]
method for example, but this has been unnecessary for the
practicalities of this problem.

Algorithm 1 The tracing algorithm
Input: Gradient G
Input: initial point x0

Input: maximum length Lm

Output: contour Ci

θ = G(x0)⊥
x1 = #x0 + (cos θ + 0.5, sin θ + 0.5)T $
Ci = {x0,x1}
j = 1
while (Ci not closed and j < Lm)

θ = arg max p(θ|x0:j , G)
xj+1 = #xj + (cos θ + 0.5, sin θ + 0.5)T $
Ci = Ci ∪ xj+1

j = j + 1
endwhile

Because of multiple starting points being generated on the
same cell boundary, contours are sometimes detected more
than once. Therefore, contours whose centroids are close to a
previously found contour are culled. Noise contours are also
sometimes detected and are typically highly non-elliptical, due
to multiple cells being detected as one, or a single cell being
detected incorrectly due to surface markings. These contours
are culled by fitting an ellipse [4] and measuring the root
mean squared error (rmse) between the detected contour and
the ellipse. Contours that are highly non-elliptical are culled.
In our case, an ellipse is culled if rmse > 1 × 105 using the
algebraic distance of [4] as an error metric.

Fig. 3. Visualisation of P (G|θ) at a junction point. The length of the vector
indicates the average of the gradient magnitudes in that direction. Note the
local maxima in the directions of the edges.

IV. RESULTS

In evaluating the algorithm, we used a data-set contain-
ing 800 SEM images. These images measure 1024 by 768
pixels, gray-scale. For our evaluation, we ran the algorithm
on 100 randomly selected images from the data-set. Four
representative trace results can be found in figure 4. Figure 4(a)
displays the results on an image particularly well suited to this
method of segmentation. All cells are situated perpendicular
to the electron beam, displaying a flat, ellipse-like surface.
Furthermore, the image contains next to no ‘shadows’ that
could distract the trace algorithm. The next (figure 4(b)) is
obtained from more or less average quality pictures from the
data-set. Still, most of the top cells are found correctly. Figure
4(c) shows the results on an image on the other end of the
spectrum: cells are squashed together tightly and are often not
lying flat on the surface. This throws off the trace algorithm,
and many of the contours found are incorrect.
Results of the trace were superimposed on the original

images, and scrutinized by eye. Contours were manually
divided into three categories as demonstrated in Figure 5: fully
correct; minimally obscured; and incorrect. The ‘minimally
obscured’ category indicates a very slight overlap breaking
the contour of this cell. Often, these cells are still correctly
detected, as they are visually similar to non-obscured cells. It
is reasonable to believe that they can be classified correctly,
but because we cannot easily predict how much data the
classifier algorithm will need, we categorise them separately.
Examples of each category can be seen in figure 5. We also
counted the number of contours that were not found, but were
nevertheless fully visible. These are false negatives. Results of
the evaluation can be found in Table I.
The incorrectly detected contours can be divided into six

categories. Figure 6(a), 6(b) and 6(c) are examples of the trace
being distracted by gradient data within a cell. This results
in contours being smaller than they should be. Figure 6(d)
shows cases where the predicted curve was not enough to



(a) High accuracy

(b) Average accuracy

(c) Low accuracy

Fig. 4. Results on three images used in the evaluation

(a) (b) (c)

Fig. 5. Contour categories. (a) Fully correct, (b) minimally obscured, (c)
incorrect

(a) Distraction by noisy
cell surface

(b) Distraction by shape
characteristics

(c) Tracing of inner con-
tour

(d) Lumping two cells to-
gether

(e) Tracing highly ob-
scured cells

(f) Distraction by abrupt
changes in curvature

Fig. 6. The six main categories of incorrectly found contours

Category Total for Mean(S.D.) for Percentage
100 images each image

Detected contours 11704 117.7(18.3) 100.0%
Correct 9655 96.6(14.8) 82.5%
Minimally obscured 1548 15.5(6.4) 13.2%
Incorrec 501 5.0(4.1) 4.3%
False negatives 70 0.7(0.8) 0.6%

TABLE I
RESULTS ON 100 RANDOMLY SELECTED IMAGES. COLUMN 2 SHOWS THE
TOTAL NUMBER OF BLOOD CELLS DETECTED IN EACH CATEGORY ACROSS

ALL IMAGES. COLUMN 3 IS THE MEAN NUMBER AND STANDARD
DEVIATION OF DETECTED CONTOURS FROM EACH IMAGE, AND COLUMN 4

IS THE PERCENTAGE OF EACH CATEGORY COMPARED TO THE TOTAL
NUMBER FOUND.

guide the algorithm around a junction point. The two cells
are still lumped together as one. The curve prediction can
also fail on cells with abrupt changes in curvature, as seen
in figure 6(f). While many of these cells are traced correctly,
some curvature changes can throw off the trace by enough to
result in a wrong contour. The few false negatives are mainly
caused by one of two things. The first, again, is a contour
with abrupt changes in curvature (figure 7(a)). The second is
a contour that passes through a low contrast area (figures 7(b)
and 7(c)). These areas result in low gradient values, and the
trace is prone to be distracted by nearby high-gradient contour
lines of other cells.

V. CONCLUSION AND FUTURE WORK

The results of our evaluation are promising. Of all contours
detected, 95.7% are either unobscured or minimally obscured
cells with only a 0.6% false negative rate, and a 4.3% false
positive rate. However, the usability of the minimally obscured
contours will have to be tested in further stages of the project.
These apparently good results are, for a large part, due to
specific properties of our problem domain. The SEM produces
low-noise, high-contrast images, and red blood cells shapes are
smooth enough to have some benefit from a prediction using



(a) Non-smooth con-
tours

(b) Dark areas (c) Bright areas

Fig. 7. Main causes for false negatives

a local curve. The errors that do occur are often caused by
noise within a cell. The trace “wants” to curve in towards
the cell, and a noisy cell surface will create enough gradient
information for it to do so. This kind of error makes up the
majority of the incorrectly traced contours.
Choosing the direction vector based on average of the

gradient magnitude information over a number of steps in
that direction causes a slight smoothing of the contour. Details
smaller than the number of averaged steps may be lost. Future
work will focus on classification of the resulting contours,
as well as improving culling measures to filter out more
incorrect contours. In order to find more than just the top-
most cells, we envision a multi-pass approach, first marking
the top contours, and then repeating the process to find lines
that end at previously found cells.

REFERENCES
[1] PJH Bronkorsta, M.J.T. Reinders, E.A. Hendriks,

J. Grimbergen, RM Heethaar, and GJ Brakenhoff. On-
line detection of red blood cell shape using deformable
templates. Pattern Recognition Letters, 21(5):413–424,
2000.

[2] S. Chien. Red Cell Deformability and its Relevance to
Blood Flow. Annual Review of Physiology, 49(1):177–
192, 1987.

[3] C. Di Ruberto, A. Dempster, S. Khan, and B. Jarra. Anal-
ysis of infected blood cell images using morphological
operators. Image and Vision Computing, 20(2):133–146,
2002.

[4] Andrew Fitzgibbon, Maurizio Pilu, and Robert B. Fisher.
Direct least square fitting of ellipses. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 21(5),
1999.

[5] A. Garrido and N.P. de la Blanca. Applying deformable
templates for cell image segmentation. Pattern Recogni-
tion, 33(5):821–832, 2000.

[6] T. Jiang and F. Yang. An evolutionary tabu search for
cell image segmentation. Systems, Man and Cybernetics,
Part B, IEEE Transactions on, 32(5):675–678, 2002.

[7] N. Malpica, C.O. de Solorzano, J.J. Vaquero, A. Santos,
I. Vallcorba, J.M. Garcia-Sagredo, and F. del Pozo.
Applying watershed algorithms to the segmentation of
clustered nuclei. Cytometry, 28(4):289–297, 1997.

[8] T. McInerney and D. Terzopoulos. T-snakes: Topology
adaptive snakes. Medical Image Analysis, 4(2):73–91,
2000.

[9] B. Nilsson and A. Heyden. Segmentation of dense
leukocyte clusters. Proceedings of the IEEE Workshop
on Mathematical Methods in Biomedical Image Analysis
(MMBIA’01), 2001.

[10] J. Park and J.M. Keller. Snakes on the watershed. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 23(10):1201–1205, 2001. ISSN 0162-8828. doi:
http://doi.ieeecomputersociety.org/10.1109/34.954609.

[11] P. Perez, A. Blake, and M. Gangnet. Jetstream: Proba-
bilistic contour extraction with particles. Proc. of Interna-
tional Conference on Computer Vision, pages 424–531,
2001.

[12] LO Simpson. Blood from healthy animals and humans
contains nondiscocytic erythrocytes. Br J Haematol, 73
(4):561–4, 1989.

[13] LO Simpson. The effects of saline solutions on red cell
shape: a scanning-electron-microscope-based study. Br J
Haematol, 85(4):832–4, 1993.

[14] LO Simpson. Capillary blood flow; red cell shape:
Implications for clinical haematology. Advances in
Physiological Fluid Dynamics. New Delhi, Narosa, pages
42–47, 1995.

[15] LO Simpson and GP Herbison. The results from red
cell shape analyses of blood samples from members of
myalgic encephalomyelitis organisations in 4 countries.
J Orthomol Med, 12:221–226, 1997.

[16] LO Simpson, BI Shand, and RJ Olds. Blood rheology
and myalgic encephalomyelitis: a pilot study. Pathology,
18(2):190–2, 1986.

[17] LO Simpson, BI Shand, RJ Olds, PW Larking, and
MJ Arnott. Red cell and hemorheological changes in
multiple sclerosis. Pathology, 19(1):51–5, 1987.


