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Abstract—This paper presents a method and pre-
liminary study for estimating the location of verte-
brae from uncalibrated bi-planar radiographs. The
method uses the axis/angle representation of rota-
tions and exact analytic derivatives for optimising the
objective function. Multiple vertebral models are in-
corporated in a single procedure. Results are shown
on both real data in vivo and on simulated data.
No ground truth for the real data is available, but
sensible results are produced by the method in com-
parison with a method using numeric derivatives.
Simulation results show that the method is robust
to Gaussian errors in the landmarks and degrades
gracefully as these errors increase.

I. Introduction

In the diagnosis and treatment of pediatric scolio-
sis patients, the analysis of the three-dimensional
(3D) structure of the spine is extremely important.
Ideally, CT-scans would be used to estimate this
structure, but because of the need for frequent
scans (every 6 months over several years), such
scans would result in an unacceptable radiation
exposure risk. As a consequence, most specialists
employ approximately orthogonal bi-planar radio-
graphs to track progress without any explicit 3D
reconstruction or measurement [1].

This paper presents a preliminary study introduc-
ing a new method for 3D model-based estima-
tion of vertebrae from uncalibrated bi-planar ra-
diographs. Although calibrated images are rela-
tively straightforward to obtain, any such tech-
nique could not be applied to the very large num-
ber of clinical images already in existence. Several
methods have been proposed to tackle the problem
of 3D estimation from bi-planar images [2], [3],
[4], [5], [6], [7], [8], [9], [10]. However, most of
these techniques require calibrated images [2], [3],
[5], [6], [7], [9], [10]. Those that do not require
a separate calibration procedure or make use of
some information from a known calibration ob-
ject [4], [8], and are therefore not valid for use

on historical data. More recent work in [11], [12]
use anatomical landmarks only for self-calibration
as in the work presented here. However, in that
work, it appears that numeric derivatives are used
and consequently “The self-calibration algorithm
is very sensitive to the quality of the input data
that is acquired ...” [11].

This paper presents a new method for the recon-
struction of vertebral position from two approx-
imately orthogonal bi-planar uncalibrated radio-
graphs. The method takes a different approach to
previous solutions: no calibration object is needed;
non-corresponding image points are used; multi-
ple vertebral models are integrated into the self-
calibration procedure; an axis/angle vector repre-
sentation of rotation is used; exact analytic deriva-
tives are derived for use in the optimisation pro-
cedure. The use of analytic derivatives and the
axis/angle axis representation results in a method
that is robust to landmark localisation errors.

A weakness of the current work is that it assumes
that an appropriate 3D model of the vertebrae is
given and that corresponding landmarks on the
vertebrae and in the images are likewise given.
This is in contrast to some recent work that at-
tempts to automatically locate vertebrae in radio-
graphic images [13], [14], [10]. Automatic locali-
sation and correspondence has not been attempted
here because the focus is on developing a method
for uncalibrated cameras.

II. Problem Statement and Repre-
sentation

The problem is to calculate the 3D position of each
vertebra from a lateral and anterior-posterior (AP)
radiograph taken in an uncalibrated setting. It is
assumed that the world coordinate origin is aligned
with the lateral image and that the same acqui-
sition parameters are used for each image (same
focal length). Inputs to the algorithm include the
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Fig. 1. The imaging setup. It is assumed that an approximate
vertebra model with identified landmarks is available. Projected
landmarks on the images are also given. The goal is to adjust
imaging parameters and model transformation parameters to
minimise the distance between identified image points and
projected landmark points.

model coordinates of each vertebra, xnj, and cor-
responding landmark coordinates on the images,
lnj and apnj. The image acquisition parameters
to estimate are:

cp Centre of projection (3 parameters).
cp = [cx, cy, f ], where cx, cy are the
image coordinates of the centre of
projection, and f is the focal length.

tap axis/angle for AP image (3 parameters),
where tap

|tap| is the axis of rotation, and
|tap| is the angle of rotation. This is an
exponential map representation of rota-
tions [15].

dap translation vector for AP image (3 pa-
rameters).

For each vertebra under consideration, there is a
need to estimate the following parameters:

tn axis/angle vector for vertebra n (3 pa-
rameters)

Sn scale parameters for vertebra n (3 param-
eters, one for each dimension indepen-
dently). Sn is represented as a diagonal
3-matrix.

dn translation vector for vertebra n (3 pa-
rameters).

The imaging setup is shown in Figure 1.

A. Model Transformations

Given coordinates of the model in model space,
xnj, for vertebra n and landmark coordinate j,

the model transformation into world coordinates
is given by:

wnj = Sn exp([t]×)xnj + dn, (1)

where wnj are the world coordinates, and
exp([t]×) is the exponential map converting the
axis/angle vector representation into a rotation
matrix [16, p.583-585].

B. Camera Projections

For the lateral image, projection is straight-
forward:

l̂nj =
f(wnj − cp)

(wnj − cp)[z]
+ cp, (2)

where the notation x[z] indicates the z-coordinate
of a 3-vector, and the hat notation indicates an
estimated or reprojected point.

For the AP image, the projection is more difficult.
Rather than directly calculate the projection trans-
formation onto an arbitrary plane, it is simpler to
inverse transform the world coordinates into the
coordinate system of the plane, then perform the
simple projection transformation:

wnj−ap = exp([−tap]×)(wnj − dap) (3)

âpnj =
f(wnj−ap − cp)

(wnj−ap − cp)[z]
+ cp (4)

C. Minimisation Procedure

The equation to minimise is:

FL,N,M (S1:L, t1:L,d1:L, cP, tap,dap) =

L∑

n=1




N∑

j=1

||lnj − l̂nj||2+

N+M∑

j=N

||apnj − âpnj||2


 (5)

where, L is the number of vertebrae, N,M are
the number of correspondences for the lateral and
AP image respectively. The total number of free
parameters are:

Nf = 9L+ 9 = 9(L+ 1). (6)

Therefore the minimum number of correspon-
dences needed is 9(L+1)/2 (each correspondence
gives two equations).
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(a) The Lateral Image

(b) The Anterior-Posterior Image

Fig. 2. Landmarks

For this paper, eight correspondences per vertebra
are used - four each for the lateral and AP image.
Three vertebra are used: L1-L3. The landmarks
chosen are the four corners of the vertebra body
as seen in each image. The landmarks are shown
in Figure 2. The corner landmarks are standard
anatomical landmarks [17], [18]. Note that land-
marks obscured by the vertebral fusion device for
Patient 1 have been estimated based on nearby
image information.

Analytic derivatives increase the chance of
numeric optimisation procedures successfully
converging on a valid minima. Although numeric
derivatives can be computed, they tend to
produce less satisfactory results. Instead, direct
analytic derivatives have been used in this paper.
Unfortunately, the derivatives are not simple and
there is no room to include them in the paper.
The Sage system [19] was used to generate the
derivatives (via Maxima [20]), and python code

Patient 1 Patient 2
Starting Error 110029 1153434

Analytic Gradient 1980 3898
Numeric Gradient 25521 29768

TABLE I
SUM SQUARED ERROR (PIXELS) FOR EACH PATIENT. THE

ERROR REPORTED IS CALCULATED FROM EQUATION 5.

Fig. 3. The initial configuration.

for computing the derivatives was generated
directly from the Sage results. This methodology
reduced the likelihood of errors (the largest
derivative has several hundred terms) and made
calculation of analytic derivatives feasible. Note
that the analytic derivatives used here are exact
rather than the approximate derivative usually
used for these sorts of applications for small
rotation angles [21, p. 39].

The scipy.optimize.leastsq (Levenberg-
Marquardt optimisation) function from [22] has
been used to find the optimal parameters both with
and without explicit gradient computations.

III. Results

A. Real Data

Currently, there is available only a very small set
of real data (two image pairs) with no ground
truth available. Nevertheless, even this minimal set
provides a useful comparison between analytic and
numeric derivative schemes. Figure 3 shows the
starting position for one of the image pairs, Fig-
ure 4 shows the optimisation result using analytic
derivatives, and Figure 5 shows the results using
numeric derivatives, both for patient 1. Figure 6
and 7 show the corresponding images for patient
2. Table I shows the final mean-squared error for
the projected versus the actual landmarks for both
sets of image pairs.
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Fig. 4. Result with analytic derivatives for patient 1.

Fig. 5. Result with numeric derivatives for patient 1.

Fig. 6. Result with analytic derivatives for patient 2.

Fig. 7. Result with numeric derivatives for patient 2.

●

●

●

●

1 2 3 4 5 6 7 8

0
50

0
10

00
15

00
20

00

Gauss sigma

C
en

tre
 o

f P
ro

je
ct

io
n 

Er
ro

r (
pi

xe
ls

)

●

●

●

●

1 2 3 4 5 6 7 8

0
50

0
10

00
15

00
20

00

Gauss sigma

Fo
ca

l L
en

gt
h 

Er
ro

r (
pi

xe
ls

)

Fig. 8. Centre Of Projection: Simulation results for analytic
(circles) versus numeric (triangles) gradients.

B. Simulation Results

To test the hypothesis that the analytic derivatives
produce robust parameter estimates, the follow-
ing experiment was conducted. A particular model
configuration of vertebrae and image planes was
chosen and the model landmarks were projected to
the images and stored as ground truth landmarks.
The ground truth landmarks were then used to
generate new landmark configurations by adding
isotropic Gaussian noise to each coordinate. Scale
differences are reported independently for each di-
mension, translation differences are reported as a
single distance (including centre of projection),
and rotation differences are reported in two com-
ponents - angle between rotation axes, and angle
difference between rotation angles. Isotropic Gaus-
sian noise of σ = {1.0, 2.0, 4.0, 8.0} was added to
the landmarks in 100 independent trials For each
noise level of σ = {1.0, 2.0, 4.0, 8.0}, 100 inde-
pendent new image landmark configurations were
generated and the optimisation procedure was ap-
plied to each new pair of configurations. Figures 8,
9 and 10 show the resulting errors for the analytic
and numeric gradients respectively.
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Fig. 9. Camera 2: Simulation results for analytic (circles)
versus numeric (triangles) gradients.
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Fig. 10. Vertebra L1: Simulation results for analytic (circles)
versus numeric (triangles) gradients.
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IV. Conclusion

In this paper, a method for estimating the 3D lo-
cation of vertebrae from two approximately or-
thogonal uncalibrated images has been presented.
Although much of the derivation is standard, it
has been shown that the use of analytic deriva-
tives is (not surprisingly) superior to the use of
numeric approximations. In vivo results from two
patients shows that the method produces sensi-
ble configurations, although no ground truth data
was available. Simulation studies have shown that
the method is robust to Gaussian errors in land-
mark estimation and that the performance degrades
gracefully even in the presence of quite large er-
rors.

This work is still quite preliminary and there are
many potential avenues for extension. The most
important task will be to develop a set of real
data with ground truth available so that a more
thorough evaluation can be performed. It would
be useful to compare the current method using
full analytic derivatives with the more usual an-
alytic approximations used in the literature [21,
p. 39]. Similarly, more efficient optimisers such
as sparse Levenberg-Marquardt should be com-
pared. Currently no attempt at automatic detec-
tion of landmarks has been attempted and this
is an obvious and necessary extension for use in
clinical practice. Also, a limited form of vertebra
deformation (independent scaling along each axis)
has been used here. For diseased spines, especially
those suffering from scoliosis, more general verte-
bra deformation is likely to be needed for accurate
recovery of position.
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