Visualising kernel spaces

Lech Szymanski and Brendan McCane
Department of Computer Science
University of Otago
PO Box 56
Dunedin, New Zealand
Email: {lechszym,mccane} @cs.otago.ac.nz

Abstract—Classification in kernel machines consists of a non-
linear transformation of input data into a feature space, followed
by a separation with a linear hyperplane. This transformation
is expressed through a kernel function, which is capable of
computing similarities between two data points in an abstract
geometric space for which individual point vectors are compu-
tationally intractable. In this paper we combine the notion of
kernel distance and methods for data dimensionality reduction
to obtain visualisations for such kernel spaces.

I. INTRODUCTION

Despite being a linear classifier, a Support Vector Machine
(SVM) [1] is capable of classifying non-linearly separable data
due to the kernel trick [2], [3]. The idea is to pass the classi-
fier’s input through a non-linear transformation into a feature
space where the points are likely to become linearly (or nearly
linearly) separable. This gives the SVM’s linear separating
hyperplane a chance of classifying complex data patterns. The
trick is to optimise the SVM cost function using its dual form
which depends on the dot product of the data vectors in the
feature space. Thus a desired transformation can be made with
a kernel function, which is capable of computing such a dot
product for spaces where individual point coordinates are not
computable. This allows for classification in abstract geometric
spaces with a large (even infinite) number of dimensions. We
will refer to these spaces as kernel spaces.

Understanding the internal representation of data in a kernel
space is important since there are a number of kernel functions
to choose from when performing classification. Different ker-
nel functions are best suited for different problems (although
certain kernels work remarkably well on a wide range of
datasets). In addition, each function has a number of param-
eters that must be set prior to classification. The choice of
these parameters determines the outcome of the classification,
and often the generalisation capabilities of the classifier. We
propose a visualisation technique that gives an idea of the data
distribution in the kernel space. A similar approach has been
used to compare medical images [4], we just expand its use to
the analysis of the inner workings of various kernel functions
and to applications in classification.

The visualisations presented in this paper are based on the
concept of kernel distance, which is explained in section II.
In section III, we show how this distance is used to create
visualisations with multidimensional scaling and include a
number of examples.

II. KERNEL DISTANCE

The kernel function computes the dot product of two points
in a kernel space. Thus, given two data vectors x; and x;,
where x;,x; € R™ of arbitrary dimension m, the kernel
function expresses the following relation:

K(xi,%;) = ®(x:)" ®(x;),)]

where ®(x;) is the projection of x; into the kernel space.
The value of the kernel function relates the similarity of two
vectors in the kernel space.

For our visualisations we need to convert this similarity to a
distance measure. Such a measure has already been proposed
and it is called the kernel distance [5], [6]. It is defined as the
magnitude of the difference vector between two points in the
kernel space:

dij = | 8(x;) — D(x))

, 2)
where

T
19(x:) — @(x;)I| = J [@(x:) = @(x7)] [@0x:) = @(xy)]-
The kernel distance is the Euclidean distance between the
two vectors in the kernel space. It is fairly trivial to expand
equation 2 to get the following relation:

dij = /) TR (x,) + ;) TB(x;) — 2B(x:) TB(x;),
(3)

which is the same as

diy = /K (xi.x0) + K(x.%7) — 2K (xi,%;). (&)

The fact that kernel distance can be computed in terms of
the kernel function is of great importance, because for many
kernels, a given vector ®(x;) is not computable, despite the
fact that K(x;,x;) is. Note that kernel distance is defined
only for kernels that produce positive definite kernel distance
matrices.

III. VISUALISATION

With the kernel distance computed using equation 4, we can
apply a dimensionality reduction technique to create a dataset
of arbitrary dimension that approximates the distribution of
the data in the kernel space. In this work we use multidimen-
sional scaling (MDS) [7], which attempts to preserve relative
distances between points. For a dataset of N points x, ..., Xy,
the representation of their distribution in the kernel space is

449

Original space

Bl &

1 *
0.5
0
-0.5

-1 4

-1 -0.5 0 0.5 1

Fig. 1.

3D visualisation of the transformation of a 2D mesh, centred at the origin, (shown on the left) to RBF and polynomial kernel spaces with various

parameter settings; the corners of the mesh in the original and the kernel space are marked with different symbols; coordinates of the visualisation are not
shown, since they are arbitrary — it’s the relationship between points that is of importance.

Original space Kpovy,r =2

20 *

0.5

Fig. 2.

Kpory,r =5 Kpory,r =8

3D visualisation of the transformation of a 2D mesh, offset from the origin, (shown on the left) to polynomial kernel spaces with various parameter

settings; the corners of the mesh in the original and the kernel space are marked with different symbols.

approximated by N vectors yq,...yn of arbitrary dimension
by minimising the following cost function with respect to

y17 ey yN:

J=

N
i=1

N
Z(Hyi—yjll —di;)*. &)
j>i

Other distance preserving techniques, such as Local Linear
Embedding [8] for instance, should work just as well.
In this paper we feature two kernel functions:

o the radial basis function kernel (RBF), often referred to
as the gaussian kernel, defined as

KRBF(xi x;) = exp 7/l ©

with variable parameter v > 0,

« the polynomial kernel, defined as
Kpory (xix;) = (x] x; +1)", 0]
with variable parameter 7.

A. Visualising 2D surfaces in kernel spaces

To get an idea of the transformation that a geometric space
undergoes in a kernel space, we created 3D visualisations of a
uniformly sampled 2D surface after being passed into different
kernel spaces (see Figures 1 and 2). We connected the points
into a mesh to give a sense of how the surface morphs after the
transformation. The reason why the MDS scaling is done in 3D
rather than 2D is to emphasise that the kernel transformation
adds dimensionality to the data.

For the RBF kernel, increasing the ~ value tends to push
points towards the edge of the space such that close neighbours

450

Fig. 3.

Krpr ,7 =20

A 3D visualisation of a two-dimensional spiral pattern in an RBF kernel space with various values of « (top row) and the corresponding SVM

classification (below); the desired class membership for a given point is indicated by marking it with a red circle or a blue cross; the classification results
after training on an SVM are shown as classification regions in blue (for crosses) and white (for circles); the points have been joined with a line following

the spiral to help spot the pattern in the 3D representation of the kernel space.

become even closer, whereas points beyond a certain distance
threshold (inversely proportional to the value of) become
identically distant. This creates an increasing void in the
middle of the space as v increases. The polynomial kernel
transformation, on the other hand, warps the space so that the
corners become stretched towards the edge of the space while
the middle points push towards the centre. In addition, the
warping is dependent on the magnitude of individual vectors in
the original space, and so the polynomial kernel transformation
is different for datasets with different offsets from the origin
(as shown in Figure 2). Conversely, the RBF kernel depends
only on the pair-wise distances between the data points, and
so a shift of the dataset in the original space does not affect its
distribution in the RBF kernel space. Hence, the RBF kernel
visualisations of the mesh, regardless of the offset from the
origin, are all identical.

B. Visualising data patterns in kernel spaces

Kernel space visualisation can be used to get an idea of
the data representation with respect to classification. Figure
3 shows a 3D visualisation of a spiral binary classification
problem in a number of RBF kernel spaces. These plots are
accompanied by the results of the SVM classification for
the corresponding kernel settings'. The visualisations show
what happens to a complex pattern, the spiral, under the RBF

TAll classifications results presented in this paper were obtained with the
LIBSVM library [9].

kernel transformation as the value of v increases. As the mid-
space void grows in the kernel space and neighbouring points
get closer, the spiral unwinds. It is not possible to see a
complex pattern, like the spiral, unwind completely in the 3D
visualisation, because it takes an infinite amount of dimensions
of the RBF kernel space to achieve that. However, Figure 3
shows a glimpse of how the pattern becomes more separable.

C. Aiding classification with kernel space visualisations

Finally, we present a scenario where kernel space visualisa-
tion can aid in choosing the appropriate kernel parameters for
SVM classification. For this demonstration we use the splice-
junction gene sequence (SJGS) dataset sourced from the UCI
Machine Learning Repository [10]. This dataset consists of
over 3000 DNA sequences that contain spliced out regions,
sections of DNA removed during the process of protein
creation, categorised into three classes. These sequences are
formed into 240-dimensional vectors that constitute the input
to the SVM classifier. One third of the data is used for training
while the other two thirds is withheld for later testing of the
classifier’s performance. Figure 4 shows a 3D visualisation of
a 200-point sample chosen at random from the training set
in an RBF kernel space with different settings of parameter
~. The diagrams indicate that out of three choices shown, the
kernel with v = 0.001 tends to group data best. As the value
of v increases, the three classes seem more mixed in the kernel
space. This suggests that the RBF kernel with v = 0.001 gives

451

KRBF Y = 0.001

Kgrpr ,7=0.1

Kgrpr ;7 =10

Fig. 4. Visualisation of the SJIGS dataset sample in an RBF kernel space with varying values of ~y; the desired class membership for a given point is indicated

by marking it with a red circle,blue cross, or a green diamond.

TABLE I
RESULTS OF THE CLASSIFICATION OF SJGS DATASET USING AN SVM
CLASSIFIER WITH DIFFERENT KERNEL FUNCTIONS

Kernel KRBF KrBr | KRBF | KLIN
v=0.001 | v=01]| v=10

Train error (%) 0.10 0.00 0.00 0.00

Test error (%) 6.9 42.6 45.0 7.9

Number of

support vectors 356 947 947 326

a more appropriate internal representation with respect to class
separation than the other two.

This is confirmed by the results of the SVM classification
shown in Table I. The table gives the test and train error, which
relate the percentage of points misclassified by the classifier
out of the entire train and test datasets respectively. The
number of support vectors relates the complexity of the model
— the fewer support vectors, the less complex the classifier.

Despite a tiny train error, the SVM classifier with the RBF
kernel with v = 0.001 gives the lowest test error, hence the
best generalisation. In addition, it uses the least amount of
support vectors (as compared to other RBF kernels). This
means that RBF kernel with v = 0.001 does not lead the
SVM to overtrain and is indeed the best choice, as suggested
by the visualisations, of the three RBF kernels examined.

We can go even further. Relying on the visualisations of
the kernel transformations in Figure 1, we can infer that the
smaller the value of « in the RBF kernel, the less severe
the distortion of the original data. Thus for v = 0.001, the
transformation into the kernel space must be nearly linear.
This prompts us to test the SVM classification of the SJIGS
dataset with a linear kernel,

Ky in(x4,x5) = xZTx]-‘ (8)

The performance of the classifier with this kernel is shown in
the last column of Table I. It does almost as well as KRgg
with v = 0.001, beating it on simplicity (in terms of support

vectors used), but losing slightly on the generalisation.

IV. CONCLUSION

We have presented a technique for the visualisation of data
distribution in kernel spaces. This method combines the kernel
distance measure with dimension reduction algorithms that
approximate the geometry of a dataset by preserving pairwise
distances. These visualisations give an intuitive idea of what
happens to data when it undergoes a non-linear transformation
through a given kernel function. Although perhaps not all that
practical for use in the state of the art classification of very
large and complex datasets, nevertheless they do offer insight
into the world of abstract kernel spaces, and should prove
useful for educational purposes.

REFERENCES

[1] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273-297, 1995.

[2] C. J. C. Burges, “A tutorial on support vector machines for pattern

recognition,” Data Mining and Knowledge Discovery, vol. 2, pp. 121-

167, 1998.

B. Scholkopf, C. J. C. Burges, and A. J. Smola, Advances in Kernel

Methods: Support Vector Learning. The MIT Press, 1998.

[4] J. Camargo, J. Caicedo, and F. Gonzdlez, “Kernel-based visualization of

large collections of medical images involving domain knowledge,” in X

Congreso Internacional de Interaccin Persona-Ordenador, 2009.

J. M. Phillips and S. Venkatasubramanian, “A gentle introduction to the

kernel distance,” CoRR, vol. abs/1103.1625, 2011.

[6] S. Joshi, R. V. Kommaraji, J. M. Phillips, and S. Venkatasubramanian,

“Comparing distributions and shapes using the kernel distance,” in

Proceedings of the 27th annual ACM symposium on Computational

geometry, ser. SOCG *11. New York, NY, USA: ACM, 2011, pp.

47-56.

1. Borg and P. J. F. Groenen, Modern Multidimensional Scaling: Theory

and Applications. ~ Springer, 2010.

S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally

linear embedding,” Science, vol. 290, no. 5500, pp. 2323-2326, 2000.

[9] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector
machines,” 2001. [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/
libsvm

[10] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[Online]. Available: http://archive.ics.uci.edu/ml/

3

[5

[7

[8

452

