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Abstract

Hidden Markov models (HMMs) have become a stan-
dard tool for pattern recognition in computer vision.
However, issues of parameter estimation and evalua-
tion are rarely addressed though they play key roles in
just how HMMs perform. Without addressing these
issues it can be readily shown that a so-called HMM
model may actually be a Bayesian classifer or Markov
Chain. In this paper we develop methods for address-
ing issues of assessing HMM component and parameter
contributions and illustrate these issues in a represen-
tative task of gesture recognition - 3D motion recovery
from 2D projections.

1 Introduction

Over the past 20 years hidden Markov models
(HMMs) have provided a structural pattern recognition
model where the aim has been to infer sequences of un-
derlying or \hidden" states from time-varying signals.
The states are assumed to obey a �rst-order Markov
condition while the signal is typically encoded by a
discrete set of observation \symbols". The Viterbi al-
gorithm has been the most popular method for pre-
dicting optimal hidden state sequences and it's asso-
ciated maximum posterior probability (MAP) score is
typically used for temporal pattern recognition, classi-
�cation. HMMs have seen particular interest in char-
acter, handwriting and gesture recognition as well as
many other spatio-temporal visual pattern recognition
domains. In these cases di�erent HMM topologies have
been developed from simply to factorial, hierarchical
and coupled HMMs.

Following the HMM nomenclature of Rabiner [6] a
discrete HMM, �, consists of three components � =
fA;B; �g having N states and M distinct observation
symbols; where A = faijg is an N �N state transition

probability matrix:

aij = P [qt+1 = Sj jqt = Si]; 1 � i; j � N: (1)

B = fbj(k)g is an N �M matrix which is the proba-
bility distribution of observation symbol, o, given state
j:

bj(k) = P [o = kjq = Sj ]; 1 � j � N; 1 � k �M;

(2)
and � = f�ig is the initial state distribution where

�i = P [q1 = Si]; 1 � i � N: (3)

Factorial, hierarchical and coupled HMMs typically
involve augmented A matrices to accommodate for
additional intra and inter state dependencies as well
as additional state-dependent observation, and even
observation-to-observation, models[6, 3, 2].

In practice the following procedures and measures
have typically been used.

� For estimation, Expectation-Maximization (EM,
the Baum Welch algorithm) still remains the most
common parameter estimation model. Here, an
initial model (typically randomly chosen) is up-
dated or conditioned by given observation se-
quences for each model. EM is well known to fall
into local minima and it is by no means clear what
is the best estimation strategy, even using EM,
when there are multiple observation sequences.

� For pattern recognition the MAP Viterbi score is
the most common decision criterion for selecting
between candidate models[6]. We will see how this
criterion is less than optimal for models with high
uncertainty.

� For prediction, Viterbi-type (dynamic program-
ming) look-ahead is typical.



In addition to the above noted reservations about
these procedures, there are also a number of ad-
ditional issues that address the actual role of the
model components - particularly as a function of
their values. Consider the three state transition
matrices,A, and three state-dependent observa-
tion B matrices (2 state and 2 observation symbol
cases)

A1 =

�
0:5 0:5
0:5 0:5

�
A2 =

�
0:8 0:2
0:8 0:2

�
A3 =

�
0:8 0:2
0:2 0:8

�

and

B1 =

�
0:5 0:5
0:5 0:5

�
B2 =

�
0:8 0:2
0:8 0:2

�
B3 =

�
0:8 0:2
0:2 0:8

�
:

These matrices can generate nine di�erent models that
could well have been estimated from observation se-
quences but illustrate quite important di�erences in
what we mean by a \HMM" model. This is be-
cause in estimation, recognition and prediction the key
evidence combination function at every time step is
aijbjk(Ot) for states i; j and observation symbol k.

Since it is also well known that the L1 norm of the
eigenvector corresponding to the unit left-hand eigen-
vector of A corresponds to the invariant (steady state
or initial) distribution of a Markov Chain[5], then
there is no particular need to examine the � vector
in this analysis. So, consider a model with:

{ A1; B1. Although it may be valid, it would corre-
spond to random observation and inferred state
sequences with no ability to discriminate between
any pair of such sequences.

{ One with A1; B2 would also fail in prediction of
the optimal state sequence due to the correla-
tion between the evidence for states given ob-
servations and, again, the lack of evidence from
previous states values.

{ On the other hand, one with A1; B3 would pro-
vide quite adequate identi�cation of the optimal
state sequence purely based on the current ev-
idence at any time step - based purely on the
B matrix acting purely as a Bayesian (ML or
MAP) classi�er - see below and Eqns. 2 and 3
above.

{ In similar ways we can observe just how the
independence and uncertainty of evidence from
A2; A3 would contribute evidence to inferring the
optimal state sequence. For example, evidence
for a particular state from the previous one us-
ing A2 is totally ambiguous.

These simple examples indicate the importance of the
model parameters in determining performance, dis-
criminating between models. This paper focuses on

how to objectively determine two key HMM compo-
nent dimensions: ambiguity and uncertainty - and we
de�ne these terms via Condition Number, Residual
Sum Vector, and Conditional Information content, as
follows.

1.1 Condition Number of a HMM

Experienced users of HMMs know that the best per-
forming HMMs are those for which the rows of the
A and B matrices are linearly independent for maxi-
mum discrimination of state and observation symbols.
However, since A and B are inextricably linked in the
model execution, it makes sense to de�ne the following
row augmented matrix:

C = AjB: (4)

where each row provides the complete description of
a given state, except for its steady state probability,
explicitly. Accordingly, to minimize model state and
symbol ambiguity we would like the rows of C to be
as linearly independent as possible. Such a condition
is nicely encapsulated by the inverse condition number
of a matrix, which can be calculated via the singular
value decomposition (SVD) [4]:

�1 = �min=�max (5)

where �max is the largest singular value of C and �min

is the smallest, so that a well conditioned matrix scores
1:0 and an ill-conditioned matrix scores close to 0:0.

1.2 HMM Residuals

Ambiguity de�ned by the condition number of C in-
dicates how well the HMM is likely to cover the di-
mensionality of the model parameter space. However,
it does not measure where rank de�ciencies may actu-
ally reside. To measure this, we let Ci be the matrix
C with row i (ri), removed. De�ne PCi

(ri) as the pro-
jection of ri onto the span of the vectors de�ned by
the row space of Ci. Now de�ne the residual vector:

~ei = ~ri � ~PCi
(ri); (6)

and the residual matrix:

E = [~e1~e2:::~eN ]
T : (7)

The residual matrix can now be used to identify ex-
actly which states (and symbols) are problematic. If a
particular element is close to 0, then the corresponding
HMM element is linearly dependent on other rows in
the matrix. If the element is close to the original ele-
ment, then it is linearly independent of the other rows
and is therefore an important element. If a whole row



is close to 0, then it indicates that the correspond-
ing state is redundant and could be removed from the
HMM.

Despite the usefulness of the residual matrix, it can be
demanding to interpret. Therefore we use a simpler
measure based on the residual matrix:

sj =

sX
i

e2ij ; (8)

for each column of E, where eij denotes the element
in row i and column j. The maximum value of any
element eij is 1:0. Now, if the row space of each of
the Ci's is orthogonal, then the maximum value of sj
would also be 1:0. However, since the row space is
typically not orthogonal, sj can be larger than 1:0.
Nevertheless, a value of sj near 1:0 indicates that el-
ement j is quite independent of other elements and is
therefore important for the HMM. On the other hand,
if sj is close to 0, there are two possibilities. Either
element j is highly dependent on the other elements
and is therefore not particularly useful to the HMM, or
element j is an unlikely state or observation symbol.
In the former case, element j can be safely removed
from the HMM. In the latter case, the practitioner
must decide if element j warrants inclusion. It may,
for example, indicate a very unlikely but extremely
important event. Note that element j refers to either
a state of the HMM (the �rst N columns of C) or an
observation symbol (the next M columns of C).

1.3 The Conditional Information of a HMM

So far we have only considered issues of dimensional-
ity, ambiguity, of the HMM model parameter space.
Here we explore this issue of what information a given
HMM component structure contributes to the perfor-
mance of the HMM. In particular, we consider how
the A and B parameters contribute to the prediction
of state sequences given a model and observations us-
ing the conditional information measure from Infor-
mation Theory[1]. A HMM consists of two compo-
nents that work in tandem: (1) a classi�er which uses
the input observation sequence to evidence the state
of the HMM (the B matrix); (2) a Markovian com-
ponent which uses the previous state to evidence the
next state (the A matrix) [6].

If the B matrix is unambiguous (for example, or-
thogonal with an inverse Condition Number of 1.0)
then a direct use of either Maximum Likelihood (ML:
maxSfp(O(t)jS)g) or maximum posterior probability
(MAP: maxSfp(SjO(t) = p(O(t)jS)p(S)g would suf-
�ce to best predict the most likely state at time,
t. This condition would eliminate the need for the
Markovian component (A matrix) by use of a simple
Bayesian (ML or MAP) classi�er. Conversely, if the

model B matrix is quite ambiguous, we may as well
dispense with it and just use the Markovian compo-
nent of the HMM - and its associated Viterbi algo-
rithm. We have used the conditional information as
a means of teasing out the contributions of each such
component to the solutions for optimal state sequences
as follows.

Given a model and an input observation sequence we
generate two state sequences, one using the Viterbi
algorithm with the entire HMM, ~Sv , and the other
with a Bayesian classi�er using only the B matrix (ML
classi�er), ~Sb. This latter condition assumes that the
predictions at each time period are independent of all
others - the assumption for normal HMMs[6]. From
the resultant two state sequences, ~Sv and ~Sb, respec-
tively, we can then calculate the following quantities:

H(vjb) = H(v; b)�H(b) (9)

where

H(v; b) = �
X
i;j

(P (Sv = i; Sb = j)logP (Sv = i; Sb = j))

(10)
and

H(b) = �
X
j

(P (Sb = j)logP (Sb = j)) (11)

where H(vjb) is the conditional entropy, and P (Sv =
i; Sb = j) is computed from the joint frequencies of
the two state sequences. This measures the amount
of information about the Viterbi solution given the
Bayesian classi�er solution. The residual information

R(vjb) = H(v)�H(vjb) (12)

provides a measure of how much information the A
matrix and the associated Viterbi algorithm, add to
the complete optimal state sequence prediction.

In all, then, these measures throw new light on the
interpretations of past published papers using HMMs
as without the type of analysis discussed above, it is
unclear as to whether past reported HMMs were ill-
conditioned, unnecessary or optimal for a given task.
In the following we illustrate how these measures can
be used to diagnose and even improve the behaviour
of HMMs.

2 Example: Gesture Recognition

We consider a diÆcult estimation problem to demon-
strate the usefulness of the measures - one not uncom-
mon in vision-based gesture recognition. The prob-
lem is one of estimating the pose (roll, pitch and
yaw) of a hand (in this case, the graphical model of
a hand) from it's image. Figure 1 shows an exam-
ple sequence of the hand. The motion of the model



Figure 1. Nine sequential frames of a video sequence
used in the deterministic movement condition.

is rigid about the wrist joint. The poses of the hand
are quantized so that there are 5 possible positions of
pitch (�p = f�30Æ; 0Æ; 20Æ; 50Æ; 80Æg), 5 possible for
roll (�r = f�90Æ;�45Æ; 0Æ; 45Æ; 90Æg) and 4 possible
for yaw (�y = f�20Æ;�10Æ; 0Æ; 10Æg) giving a total of
100 possible poses.

For this example we concentrated on estimating the
pitch of the hand only (although roll and yaw also
change). To estimate pitch, we have used the aspect
ratio of the silhouette as our observation and calcu-
lated as the ratio of the smallest to largest eigenvalue
of the 2D distribution of the pixels inside the silhou-
ette. In this case we have explored performance with 5
states: the need to recover 5 3D poses purely from the
image under a number of movement conditions corre-
sponding to a deterministic walk, a random walk, and
a set of purely randomly selected poses.

2.1 Case 1:Deterministic Walk

In the deterministic walk, the sequence of hand poses
was completely predictable. Starting from the neutral
pose of the hand, each position of the roll, pitch and
yaw is moved to it's next position until the maximum
range of motion was reached. The motion then re-
versed in a backwards fashion. Figure 1 shows nine
frames of the sequence.

We generated two 1000 length sequences and stored
both the ground truth data (i.e. the actual pitch as
these images were generated from 3D CAD models) as
well as the observations (the aspect ratio of the silhou-
ette) for each frame of the sequence: one sequence for
training and one for testing. Initial estimates of the
HMM were then obtained using the moving window
method. We then used the Baum-Welch procedure to

update the model. Initially, we arbitrarily partitioned
the observation range into 5 equal symbol bins. This
produced the following HMM:

A =

2
66664

0:0 1:0 0:0 0:0 0:0
0:5 0:0 0:5 0:0 0:0
0:0 0:5 0:0 0:5 0:0
0:0 0:0 0:5 0:0 0:5
0:0 0:0 0:0 1:0 0:0

3
77775

B =

2
66664

1:0 0:0 0:0 0:0 0:0
1:0 0:0 0:0 0:0 0:0
0:0 1:0 0:0 0:0 0:0
1:0 0:0 0:0 0:0 0:0
1:0 0:0 0:0 0:0 0:0

3
77775

� = [0:06 0:13 0:62 0:13 0:06]

If we calculate the inverse condition number of the
augmented matrix AjB, we obtain 0:23 indicating that
the HMM is not ideal. The residual sum of the matrix
is (Eqn. 8):

R1 = [0:5 0:6 0:4 0:6 0:5 0:3 0:9 0:0 0:0 0:0]: (13)

This indicates that only the �rst 2 observation sym-
bols are useful (recall that the �rst 5 elements of R1

refer to the HMM states), and that the rest could be
discarded. Clearly R1

7 (�rst element is R1

1) performs
better than R1

6 and the overall prediction accuracy is
63% on the test sequence. In turn, the HMM could be
improved by re�ning symbol R1

6 and removing sym-
bols R1

8; R
1

9; R
1

10. We could possibly also improve the
states somewhat by adding new states; however, this
is diÆcult to do meaningfully in a supervised learning
situation such as this one. Consequently, we split R1

6

into three distinct symbols and removed R1

8, R
1

9 and
R1

10 resulting in 4 observation symbols. Re-estimating
a new HMM results in:

B =

2
66664

1:0 0:0 0:0 0:0 0:0
0:0 0:0 0:0 1:0 0:0
0:0 0:0 0:0 0:0 1:0
1:0 0:0 0:0 0:0 0:0
1:0 0:0 0:0 0:0 0:0

3
77775 :

This gives an inverse condition number of 0:34 and a
residual sum vector of:

R2 = [0:4 0:7 0:5 0:7 0:6 0:4 0:0 0:8 0:9]:

This HMM results in a perfect prediction accuracy (
100%) on the test sequence. The role of the Markov
component of the HMM is measured by the residual
information. In this case we found that H(v) = 2:25,
H(vjb) = 0:75 and so R(vjb) = 1:5 or 33% of the infor-
mation was contained within the A matrix (and the
associated Viterbi algorithm) in predicting the opti-
mal state sequence. This result is consistent with the
results of the Bayes classi�er, alone, which is only 75%
correct compared to the complete Viterbi solution of
100% correct.



2.2 Case 2:Random Walk

In the second example we have performed a random
walk over each of the degrees of freedom of the hand:
given the current pose there is an equal probability
of stepping one step forward or one step backwards
on each degree of freedom (roll, pitch or yaw). This
is a much more diÆcult problem than the previous
one as each pitch pose may occur with any combina-
tion of roll or yaw poses. Again estimating a HMM
using the moving window technique and then apply-
ing the Baum-Welch algorithm to produce a �nal es-
timate, produces the following HMM with �ve equally
distributed observation symbols:

A =

2
66664

0:46 0:54 0:00 0:00 0:00
0:45 0:00 0:55 0:00 0:00
0:00 0:53 0:00 0:47 0:00
0:00 0:00 0:46 0:00 0:54
0:00 0:00 0:00 0:55 0:45

3
77775

B =

2
66664

0:74 0:26 0:0 0:0 0:0
0:90 0:10 0:0 0:0 0:0
0:67 0:33 0:0 0:0 0:0
0:89 0:05 0:04 0:03 0:0
0:86 0:14 0:0 0:0 0:0

3
77775

� = [0:20 0:16 0:30 0:14 0:20]:

The inverse condition number for this HMM is 0:13
which indicates correlations and redundancies within
the model with a characteristic low prediction perfor-
mance of 29% correct on the test data. The residual
sum is:

R1 = [0:4 0:4 0:5 0:4 0:4 0:1

0:1 0:0 0:0 0:0]:

Given the relatively better discriminatory power of
the symbols (last 5 components of R1) we split the
�rst and second symbols into three new symbols each,
leaving the third and fourth symbols and deleting the
�fth symbol. The �fth symbol does not appear in the
training data and it can be trivially deleted, the third
and fourth symbols do appear in the data but very
rarely, and we have maintained them for completeness.
After rerunning the estimation mode, we obtained an
inverse condition number of 0:19, and a residual sum
vector of:

R2 = [0:5 0:5 0:5 0:5 0:4 0:2 0:2

0:1 0:2 0:1 0:0 0:1 0:1]

and prediction performance of 40% correct.

Continuing this process for three more iterations, re-
sulted in an inverse condition number of 0:28 and a
prediction performance of 75% correct with 34 obser-
vation symbols. The actual matrix is not included for

the sake of brevity. In this �nal case, H(v) = 2:32,
H(vjb) = 1:59 and R(vjb) = 0:73 or 69% of the in-
formation was contained in the A matrix in predicting
the optimal state sequence. This is con�rmed since the
Bayes classi�er performed at 50% correct prediction,
signi�cantly less than the complete HMM (75%).

2.3 Case 3:Random Poses

For the random poses case, at each frame a random
pose for the hand is chosen. Unlike the previous ex-
amples, one would expect no contribution from the
Markovian element of the HMM. Using a similar ap-
proach to that followed in the above examples (starting
with �ve initial symbols and progressively re�ning the
appropriate ones), after four iterations we arrive at a
HMM with an inverse condition number of 0:11 and a
residual sum of:

R4 = [0:1 0:1 0:1 0:0 0:1 0:3 0:2 0:3

0:1 0:2 0:2 0:1 0:1 0:2 0:1 0:30:2

0:1 0:0 0:1 0:1 0:2 0:2 0:1 0:1

0:0 0:0 0:2 0:0 0:1]:

So clearly, we have an extremely diÆcult problem on
which the HMM doesn't appear to be doing very well.
In fact, the prediction performance is 49% correct. In
this case we found that H(v) = 2:06, H(vjb) = 0:56
and so R(vjb) = 1:5 or 27% of the information was
contained within the A matrix in predicting the op-
timal state sequence. This indicates that the Markov
component of the HMM is not helping and this is con-
�rmed by the performance of the Bayes classi�er at
44% correct - quite close to the performance of the
full HMM.

In all then, we can make two conclusions from these
simulations. One, even before running the HMM on
data we can already determine how well it can per-
form on similar data to the training data by the pro-
posed diagnostic tools. Two, past reports on success
of HMMs may have nothing to do with HMMs, per se,
but rather to the selection of good features or dynam-
ics which can be unambiguously modeled by a simple
Markov Chain or Bayesian classi�er.

3 Classi�cation performance

What has been discovered about prediction also ap-
plies to classi�cation. To illustrate this we have gen-
erated a number of HMMs by simultaneously varying
both the A and B matrices from deterministic to uni-
form(random)as:�
0 1
1 0

� �
0:05 0:95
0:95 0:05

�
� � �

�
0:55 0:45
0:45 0:55

� �
0:5 0:5
0:5 0:5

�
:
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Figure 2. Shows MAP values as a function of average
absolute di�erence between model parameters as a func-
tion of the model Condition Numbers and uncertainties.
Dashed curve corresponds to the deterministic reference
model (Condition Number of 1) and solid curve to the
random model (Condition Number of 0)

We selected two HMMs corresponding to: (1) the de-
terministic case: A and B matrices being the identity
with an inverse Condition Number of 1. (2) the ran-
dom case, with both A and B matrices having values
of 0:5 everywhere and an inverse Condition Number of
0. For each of these HMMs we then generated a set of
observations using HMM Monte Carlo sampling.

The Viterbi algorithm was then run on these observa-
tion sequences using the generation (reference) model
and a number of the remaining models. MAP values
were recorded and plotted against the model average
absolute di�erence to the initial model and the results
are shown in Figure 2. Here model distance was sim-
ply de�ned as the total absolute distance between en-
tries in the model C matrices (Eqn. 4). These curves
clearly demonstrate that as the HMM contains more
uncertainty the identi�cation, via the Viterbi and the
MAP criterion algorithm, fails. This also applies to
model estimation, using the Baum Welch estimation
procedure, though space does not permit a detailed
analysis of this.

4 Discussion

Here we have explored three tools for the diagnosis of
HMMs. The condition number identi�es from the A
and B matrices how successful a given HMM is likely to
be at generating correct state sequences. The residual
sum matrix identi�es which states or observation se-
quences need to be re�ned or removed from the model
to improve it. The last measure based on Mutual In-
formation identi�es if the HMM is likely to do any bet-
ter than a simple Bayesian classi�er (ML) using the B

matrix, alone. The �rst and last measures are some-
what independent and identify di�erent (but overlap-
ping) areas of HMM usefulness. The tools are also
powerful - they not only identify if a given HMM is
useful or not, but also identify exactly what the prob-
lem is.

Furthermore these tolls provide the practitioner with
methods for improving the model. It seems quite likely
that this pruning and splitting routine could be auto-
mated and we intend to pursue this in future. Other
avenues to pursue is to extend the analysis to be able
to cope with continuous observation densities explic-
itly (rather than by quantization as in the examples
above), and to extend the analysis to coupled HMMs.

Finally, we have also observed that uses of the Viterbi
algorithm and MAP score is by no means reliable for
pattern recognition - that is, model identi�cation, as
the model departs signi�cantly from a deterministic
one. That is, for the extreme case of a random model
model discrimination is near impossible until the com-
parison model parameters are on average 50% di�erent
from the reference model.

Together, this analysis clearly demonstrates the need
for HMM components analysis and parameter docu-
mentation in future uses of HMMs in Computer Vi-
sion studies before any scienti�c conclusions can be
made about claims that a HMM model is appropriate
for solving a given spatio-temporal pattern recognition
problem.
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