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Abstract

In this paper we consider two related problems in hidden Markov models (HMMs). One, how the various parameters of
an HMM actually contribute to predictions of state sequences and spatio-temporal pattern recognition. Two, how the HMM
parameters (and associated HMM topology) can be updated to improve performance. These issues are examined in the context
of four di3erent experimental settings from pure simulations to observed data. Results clearly demonstrate the bene4ts of
applying some critical tests on the model parameters before using it as a predictor or spatio-temporal pattern recognition
technique.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Hidden Markov models (HMMs) have become a
standard method for encoding, recognizing and predicting
sequential patterns of univariate and multivariate observa-
tion data. The Viterbi algorithm has been the most popular
method for predicting optimal state sequences and it’s as-
sociated maximum posterior probability (log(MAP)) score
is typically used for temporal pattern recognition and clas-
si4cation. Similarly, the Baum Welch algorithm, a form
of expectation-maximization (EM), and its variations, has
been the predominant model estimation technique, given a
model topology [1,2].

A number of methods for generating and updating HMM
topologies (the number of states and their state transitions)
have also been explored in recent years. These methods in-
clude state splitting and deletions [3] using MDL and en-
tropy MAP-based methods [4] where the aim is typically
to maximize predictions with the smallest number of model
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parameters, �, given an observation sequence. Other work
on topology estimation has focused on comparing HMM
model performance. For example, Lyngso et al. [5] focus on
comparing HMMs in terms of the co-emission probability of
state emissions. Bahlman et al. [6] use Bayesian estimates
of HMM state correspondences. Balasubramanian [7] has
performed extensive theoretical work on 4nding equivalent
HMMs based on the equal probability of the observation
sequences alone, and regardless of the number of internal
states. He then uses this result to de4ne conditions and an
algorithm for 4nding minimal Generalized Markov Models
(an HMM with the parameter positivity constraint relaxed).
In some sense these minimal models are optimal as they
contain the fewest number of parameters for the same result
—given an observation sequence.

The problem is, however, the observation sequences,
Õ. For example, how do we know they are represen-
tative, unbiased or suCcient to base model estimation
and update upon? Consequently in this paper, we 4rst
explore what can be concluded about a HMM’s model
parameters without considering any particular observa-
tion sequence. Further, even if the estimation method is
based upon observations it is still important to interpret
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the roles of the model parameters in performance of the
model.

First, some de4nitions. We follow the HMM nomencla-
ture of Rabiner [1]. The discrete HMM model, �, consists
of three components � = {A; B; �} having N states and M
distinct observation symbols; where A= {aij} is an N × N
state transition probability matrix and

aij = P[qt+1 = Sj | qt = Si]; 16 i; j6N; (1)

where q corresponds to the state random variable (r:v:),
B = {bj(k)} is an N × M matrix which is the probability
distribution of observation symbol, o, given state j, where

bj(k) = P[o= k | q = Sj]; 16 j6N; 16 k6M; (2)

for the observation r:v:, o; and � = {�i} is either the initial
state distribution where

�i = P[q1 = Si]; 16 i6N (3)

or the steady state distribution:

∀t¿ t∗ �i = P[qt = Si]; 16 i6N: (4)

In the HMM literature, the former interpretation is common,
and the latter is common in the Markov chain literature.

2. Some initial observations

Critical to model estimation are the forward and backward
operators. For each state, Sj , at time, t + 1, we have the
recursive forms

�j(t + 1) =
N∑
i=1

�i(t)aijbj(ot+1); 1¡j6N (5)

and

�i(t) =
N∑
j=1

�i(t + 1)aijbj(ot+1); 16 i ¡N; (6)

respectively. For model prediction (using the Viterbi algo-
rithm) the forward operator is transformed into

�j(t + 1) = max
i

{�i(t)aijbj(ot+1)}: (7)

In all three cases, the product term aijbj(ot+1) plays a key
role and the matrix

C = ATB ⇔ cik =
N∑
j=1

aijbi(k) (8)

encodes all terms in these equations. Balasubramanian [7]
also noted the importance of ATB in de4ning model equiv-
alence and minimal models.

Further, if the A matrix has unit rank then we know that
the emission pdfs are identical to the steady-state (invari-
ant) distribution of the underlying Markov chain [8]. This
follows from the fact that in such situations the 4rst left
eigenvector is identical to the common row vector. In this

case, then
N∑
j=1

aijbj(k) =
N∑
j=1

a:jbj(k) =
N∑
j=1

�jbj(k): (9)

Also, for estimation, then, we obtain

�j(t) = max
j

{�i(t − 1)�jbjk(t)} (10)

= max
j

{p(o(t)=Sj)p(Sj)}: (11)

That is, the computation at each event corresponds to that
of a MAP Bayesian classi4er as the Markov constraint does
not di3erentiate values of �j(t). A similar situation applies
to the B matrix. That is, a unit rank B matrix adds no new
information to predictions from observations. Consequently,
it is important to assess the contributions of these two major
sources of information in model interpretation, estimation
and prediction.

For example, consider the following three A and B matri-
ces (2 state and 2 observation symbol cases):

A1 =

[
0:5 0:5

0:5 0:5

]
A2 =

[
0:8 0:2

0:8 0:2

]

A3 =

[
0:8 0:2

0:2 0:8

]

and

B1 =

[
0:5 0:5

0:5 0:5

]
B2 =

[
0:8 0:2

0:8 0:2

]

B3 =

[
0:8 0:2

0:2 0:8

]
:

These matrices can generate nine di3erent models that could
well have been estimated from observation sequences but
illustrate quite important di3erences in what we mean by
an “HMM” model. Since it is also well known that the L1

norm of the eigenvector corresponding to the unit left-hand
eigenvector of A corresponds to the invariant (steady state
or initial) distribution of a Markov chain [8], then there is
no particular need to examine the � vector in this analysis.
So, consider a model with:

• A1, B1. Although it may be valid, it would correspond to
random observation and inferred state sequences and no
predictive power.

• One with A1, B2 would fail in prediction of the optimal
state sequence due to the correlation between the evidence
for observations given states and, again, the lack of evi-
dence from previous states values.

• On the other hand, one with A1, B3 would provide quite
adequate identi4cation of the optimal state sequence based
purely on the current evidence at any time step—the B
matrix being used as a Bayesian (ML or MAP(using �))
classi4er.
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• In similar ways, we can observe just how the indepen-
dence and uncertainty of evidence from A2, A3 would con-
tribute evidence to inferring the optimal state sequence.
For example, evidence for a particular state from the pre-
vious one using A2 is totally ambiguous.

The above observations and examples indicate the impor-
tance of the model parameters in determining performance
and discriminating between models even without consider-
ing any particular observation sequence. Although these ob-
servations are not conducive to, by de4nition, MAP analy-
sis, other objective techniques can be used to determine two
key HMM components of a given HMM: its ambiguity and
uncertainty. Here we explore the use of the Inverse Condi-
tion Number and Residual Sum Vectors to identify model
parameters and updates and, when observations are avail-
able, we explore the Conditional Information of the model
components to identify their contributions to optimal per-
formance.

3. The augmented matrix

Following on from these initial observations, our aim
is to develop a method for assessing the contributions of
the HMM components (speci4cally, the A and B matrices)
to model performance. Although, as already discussed, the
product matrix, ATB, plays a critical role in recognition and
prediction, in order to enable model updating we explore
characteristics of the more informative row augmented ma-
trix:

C = A |B: (12)

In the light of the above discussion, it is clear that the more
linearly independent the rows of C are, the derivation of
optimal state sequences and identi4cation of temporal pat-
terns becomes more unique for the model. This leads to the
following measures that provide objective ways of deter-
mining just how the model parameters can contribute to the
prediction of optimal state sequences—for any observation
sequence.

3.1. HMM component analysis and the inverse condition
number

In practice, HMMs are typically focused on predicting the
optimal (MAP) state sequences from observations. How-
ever, some properties of these states can already be deduced
from the model components, per se. First, the Markov chain
component. For a Markov process, a well-known way of
de4ning the distance between the current state transition
probabilities and the steady state density function (invariant
pdf) is from the total of the left-handed “residual eigenval-
ues” of A (!res(A))—the total of all the sub-dominant eigen-
values [8]. When all rows of the Markov chain are identical

the Markov chain condition breaks down in so far as

P[S̃ t+1 | S̃ t] = P[S̃ t+1] = P[S̃ t] = �: (13)

Consequently, !res(A) =
∑N

i=2 !
2
i (A) provides a measure of

how ergodic the process is and consequently the potential
for generating variable state sequences as a function of the
observation.

Secondly, as the rows of the state-dependent observation
matrix, B, become more correlated, the evidence for a spe-
ci4c state from observations decreases. Similar to the A ma-
trix steady-state condition, observations do not evidence any
state when the B matrix has only one non-zero eigenvalue,
leading to

P[Ok | Si] = P[Ok ]: (14)

In all then, using the singular values of C, $, the inverse
condition number (ICN) of C [9] is

%−1 = $min=$max; (15)

where $max is the largest singular value of C and $min is the
smallest, is an appropriate normalizedmeasure of the “HMM
bandwidth” in so far as %−1=1:0 indicates that all states can
be realized within the limits of the steady-state probabilities
and state-dependent observations. However, %−1 = 0 results
in a “zero-bandwidth” HMM in so far as the process, on
any experiment, does not provide any predictive information
about state sequences except those provided by the prior or
steady-state conditions.

3.2. HMM residuals

Such measures indicate how well the HMM is likely to
cover the full dimensionality of the model parameter space.
However, it does not measure where rank de4ciencies may
reside. To measure this, we let C\i be the matrix C with row
i (ri), removed. We then compute PC\i (ri), the projection
of ri onto the span of the vectors de4ned by the row space
of C\i. The residual vector

ei = ri − PC\i (ri); (16)

encodes the degree of redundancy of the complete descrip-
tion of state i (row i) as it contains both state transition and
observation dependencies. The complete residual matrix

E = [̃e1ẽ2; : : : ; ẽN ]
T (17)

de4nes the distribution of parameter (both state and observa-
tion) dependencies/redundancies and it can be used to iden-
tify exactly which states (and symbols) are problematic. If
a particular element is close to 0, then the corresponding
HMM element is linearly dependent on other rows in the
matrix. If the element is close to the original element, then
it is linearly independent of the other rows and therefore an
important element. If a whole row is close to 0, then it in-
dicates that the corresponding state is redundant and could
be removed from the HMM.
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Despite the usefulness of the residual matrix, it can be
demanding to interpret. Therefore we use a simpler measure
based on the residual matrix:

s:j =
√∑

i

e2ij ; (18)

for each column of E, where eij denotes the element in row
i and column j. The maximum value of any element eij is
1:0. Now, if the row space of each of the Ci’s is orthogonal,
then the maximum value of s:j would also be 1:0. However,
since the row space is typically not orthogonal, s:j can be
larger than 1:0. Nevertheless, a value of s:j near 1:0 indicates
that symbol j is quite independent of other symbols and is
therefore important for the HMM. On the other hand, if s:j is
close to 0, there are two possibilities. Either state or symbol
j is highly dependent on the other symbols and is therefore
not particularly useful to the HMM, or it is unlikely to occur.
In the former case, symbol j can be safely removed from
the HMM.

The measure

si: =
√∑

j

e2ij ; (19)

de4nes the degree to which a given state is redundant over
both states and symbols. As with s:j , increases in si: indicate
the independence of a given state with respect to both the
Markov condition and the state-dependent observations.

3.3. The conditional information of an HMM

We now consider how the A and B parameters contribute
to the prediction of state sequences given a model and ob-
servations. As already mentioned, this has been the standard
method for model evaluation and update. Here we show
how conditional information [10] can be used to assess the
contributions of these di3erent components.

If the B matrix is unambiguous (for example, orthogonal
with an ICN of 1.0) then a direct use of either maximum
likelihood (ML: maxS {P[O(t) | S]}) or maximum poste-
rior probability (MAP:maxS {P[S |O(t)]=P[O(t) | S]P[S]}
would suCce to predict the most likely state at time, t. This
condition would eliminate the need for the Markov compo-
nent (A matrix) by use of a simple Bayesian (ML or MAP)
classi4er. Conversely, if the model B matrix is ambiguous
(ICN of 0), we may as well dispense with the observation
part and simply use the Markov component of the HMM to
determine the most likely state sequence given the Markov
model. Accordingly, we show how Conditional Information
can be used to tease out the contributions of each component
to the solutions for optimal state sequences.

We have investigated this measure using the following
procedure. Given a model and an input observation sequence
we generate two state sequences, one using the Viterbi al-
gorithm with the entire HMM, S̃v , and the other with a
Bayesian classi4er using only the B matrix (ML classi4er)

resulting in S̃b. This latter condition assumes that the pre-
dictions at each time period are independent of all others
—a condition consistent with the independence of observa-
tions over time for regular HMMs. Given the resultant two
state sequences, S̃v and S̃b, respectively, we can calculate
the following quantities:

H (v | b) = H (v; b) − H (b); (20)

where

H (v; b) = −
∑
i; j

(P(Sv = i; Sb = j)

× logP(Sv = i; Sb = j)) (21)

and

H (b) = −
∑
j

(P(Sb = j) logP(Sb = j)): (22)

H (v | b) is the conditional entropy, and P(Sv = i; Sb = j)
is computed from the joint frequencies of the two state se-
quences. This measures the amount of information about the
Viterbi solution given the Bayesian classi4er solution. The
residual information

R(v | b) = H (v) − H (v | b) (23)

provides a measure of how much information the A matrix,
and the associated Viterbi algorithm, add to the complete
optimal state sequence prediction.

In all, then, these measures o3er clear ways for interpret-
ing HMM performance and even the limits on the prediction
of performance on any data set. In the following, we illus-
trate how these measures can be used to diagnose and even
improve the performance of HMMs.

4. Experimental investigations

Since most applications of HMMs in pattern recogni-
tion are concerned with classi4cation or identi4cation of
spatio-temporal patterns the typical criterion used is the
Viterbi score de4ned as the log(MAP) probability of the
optimal state sequence given an observation sequence and
the model. We will show how this is less than an optimal
method for discriminating between models and data as a
function of the model’s uncertainty. Further, the MAP value,
per se, does not capture how well the HMM can predict or
discriminate the state or observation sequences when this
is a critical component to encoding and recognition. For
this reason, we use a more stringent criterion to evaluate
HMM performance: the degrees to which predicted opti-
mal state sequences agree between di3erent HMMs on the
same data and the same HMM on di3erent observation se-
quences. We consider four types of data: statistical experi-
ments on binary state models, simulations representative of
many gesture recognition tasks, some experimental data on
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gesture recognition, and 4nally, a simple speech recognition
task.

4.1. Simulation experiments

First, we have analyzed a very simple class of HMMs
having two states and two observation symbols with sys-
tematically varying probabilities. From these HMMs, we
generated test sequences using Monte Carlo sampling from
which we could perform the proposed measurements. We
generated a range of HMMs by varying both the A and B
matrices independently from deterministic to random, with
each of the A and B matrices being:[
0 1

1 0

] [
0:05 0:95

0:95 0:05

]
· · ·

[
0:5 0:5

0:5 0:5

]
(24)

resulting in a total of 121 (11 × 11) HMMs.
In the 4rst experiment, we tested how well we can con-

sistently estimate state sequences generated from each of
the above HMMs in the presence of “noisy” observation
sequences. For each HMM two observation sequences of
length 1000 were generated using Monte Carlo sampling of
the model parameters. One of these observation sequences
was then perturbed by randomly (uniformly) interchanging
x% of the observations of a given sequence (noise permuta-
tions). The other sequence was not permuted for comparison
purposes.

Optimal state sequences were generated using the Viterbi
algorithm on the original observation sequence (without
noise permutations) and each of the noise permuted ones.
These predicted state sequences were then compared in
terms of the percentage of identical versus di3erent pre-
dicted states. This method provides a way of determining
the degree to which the model can generalize to di3erent
observation sequences in predicting the optimal state se-
quence. The results are shown in Figure 1 where both axes
vary from deterministic (=1) to random (=10). As can
be seen from the 4gure, as both the A and B matrices be-
come more random, the ability to estimate the optimal state
sequence, for the original HMM, degrades. As expected,
50% correct (PC) indicates that the HMM performs no
better than a random guess. Although the occurrence of
noise degrades the performance of the HMM, it degrades
gracefully.

Fig. 2 shows how the ICN correlates with performance
(Pearson’s r= :8) and the 4gure shows the least-squares re-
gression line with the 95% con4dence interval. This demon-
strates how the ICN is a reasonable estimator of HMM
performance when dealing with the normal uses of HMMs
when there is a need to accommodate generalizations of the
model: to apply when data is not exactly consistent with
it in varying degrees. Although the ICN de4nes ambiguity
it does not separate it from uncertainty. For example, the
deterministic two-state Markov matrix with (1; 0) rows
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Fig. 1. Results for estimating state sequences from examples of the
noisy observation sequences. We have varied each of the A matrix
and B matrix from deterministic (axis value=1) to random (axis
value = 10). The di3erences between noise levels are small but
most notable along the top right axis.

has a zero ICN as does one with (:5; :5) rows. However,
besides these extreme cases both terms are typically cor-
related explaining the result shown simply for ICN in
Fig. 2.

From Fig. 1(a), it is diCcult to determine if the A or B
matrix is the most important factor in the HMM. However,
if we assume that we need at least an 80% PC rate for the
HMM to be useful, we can threshold the results in Fig. 1(a)
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Fig. 2. Shows the relationship between ICN (%−1) and percentage
correct (PC) prediction of observations. The raw data is plotted
along with the least squares regression line and the upper and lower
95% con4dence interval lines.

to observe what range of parameters satis4es this criterion.
The result is shown in Fig. 3. This 4gure clearly highlights
that the B matrix is the most important factor in the suc-
cess of an HMM. That is, A is required to be near deter-
ministic to a3ect the performance over the B matrix—an
interesting result since the B matrix can be used to derive
the most likely state given the observation and prior state
probabilities.

We have performed a similar experiment to those dis-
cussed using the H (v) and H (v | b) conditional information
values as the dependent variables. These results are shown
in Fig. 4. As can be seen the entropy of the Viterbi sequence
is approximately 1 everywhere which is as expected since
we expect the occurrence of both states to be approximately
equal in this hypothetical example. Fig. 4(b) clearly indi-
cates that an HMM does no better than a Bayesian classi4er
when either the observation evidence is very good or the
Markovian component approaches the random case. The in-
teresting observation is that this is not a gracefully degrad-
ing function. There is a very clear delineation between the
areas where the Markovian component is having an e3ect
and those where it has no e3ect.

Consistent with Fig. 3 the H (v | b) results demonstrate the
redundancy of the Markov condition when the rank of the B
matrix is high: the evidence from observations is unambigu-
ous. In the following, we consider a more realistic applica-
tion of these measures to assessing just how the components
of an HMM-based method for recognizing hand movements
contribute to the performance prediction.

4.1.1. Classi6cation performance
What has been discovered about prediction also ap-

plies to classi4cation. To illustrate this we have gener-
ated a number of HMMs by simultaneously varying both
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Fig. 3. Results for estimating state sequences with a threshold of
80%. We have varied each of the A matrix and B matrix from
deterministic (axis value=1) to random (axis value = 10).

the A and B matrices, as before, from deterministic to
uniform(random)as

[
0 1

1 0

] [
0:05 0:95

0:95 0:05

]
· · ·

[
0:55 0:45

0:45 0:55

] [
0:5 0:5

0:5 0:5

]
:

We selected two HMMs corresponding to: (1) the determin-
istic case: A and B matrices being the identity with an ICN
of 1. (2) the random case, with both A and B matrices hav-
ing values of 0:5 everywhere and an ICN of 0. For each of
these HMMs we then generated a set of observations using
HMM Monte Carlo sampling.

The Viterbi algorithm was then run on these observa-
tion sequences using the generation (reference) model and
the remaining models. MAP values were recorded and plot-
ted against the model average absolute di3erence to the
initial model and the results are shown in Fig. 5. Here
model distance was simply de4ned as the total absolute dis-
tance between entries in the model C matrices (Eq. 12).
These curves clearly demonstrate that as the HMM con-
tains more uncertainty the identi4cation, via the Viterbi
and the MAP criterion algorithm, fails. This also applies to
model estimation, using the Baum Welch estimation proce-
dure, though space does not permit a detailed analysis of
this.

4.1.2. Iterative results
As a 4nal simulation example, we show how our three

measures change with each iteration of the Baum Welch
training procedure. In this case we have used a single
HMM to generate two observation sequences (Otraining,
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Fig. 4. Shows, as a function the di3erent model parameters. Left: H (v)-information in the Viterbi solution. Right: H (v | b): the information
contained in the the Viterbi solution not contained in the Bayes classi4er.

Fig. 5. Shows log(MAP) values as a function of average absolute
di3erence between reference and comparison model parameters.
Dashed curve corresponds to the deterministic reference model
(Condition Number of 1) and solid curve to the random model
(Condition Number of 0).

Otest) 10,000 symbols long:

A=

[
0:2 0:8

0:8 0:2

]
; B =

[
0:7 0:3

0:3 0:7

]
;

� =

[
1:0

0:0

]
: (25)

FromOtest we then use BaumWelch to estimate the (known)
underlying HMM, initialized by the random HMM:

A=

[
0:5 0:5

0:5 0:5

]
; B =

[
0:5 0:5

0:5 0:5

]
;

� =

[
1:0

0:0

]
: (26)

Fig. 6(a) shows how the measures vary with each iteration
of the Baum Welch estimation procedure, as indexed by
log(MAP) values, on the training data. These model esti-
mates at each iteration were then used to compute a Viterbi
score (again, log(MAP)) on the test data, at each iteration—
as shown in Fig. 6(b) and a comparable percentage correct
score (PC) on the test data—Fig. 6(c). We have only shown
how the residual sum for state 1 (s:1) changes as train-
ing proceeds as we get very similar results for the other
symbols (state 2 and observation 1 and 2). The results
demonstrate, as expected, how each of the measures
improve as training proceeds. In particular, the mu-
tual information measure demonstrates how the Baum
Welch estimation procedure quickly settles on a model
which exploits both the observation model and the
Markov property on the HMM as de4ned by the model
(Eq. (25)).

5. Predicting 3D hand movements from image features

We consider a diCcult realistic, yet under constrained,
estimation problem—one not uncommon in vision-based
gesture prediction. The problem is one of estimating the
pitch of a hand from its image. Fig. 7 shows an exam-
ple sequence of a (synthetic) hand. The motion of the
model is rigid about the wrist joint. The poses of the
hand are quantized so that there are 4ve possible positions
of pitch (�p = {−30◦; 0◦; 20◦; 50◦; 80◦}), 5 possible for
roll (�r = {−90◦;−45◦; 0◦; 45◦; 90◦}) and 4 possible for
yaw (�y = {−20◦;−10◦; 0◦; 10◦}) giving a total of 100
possible poses. We have used the aspect ratio of the sil-
houette as our observation and calculated as the ratio of
the smallest to largest eigenvalue of the 2D distribution of
the pixels inside the silhouette. Again, the aim was to re-
cover 4ve 3D poses purely from the image under a number
of movement conditions corresponding to a determinis-
tic walk, a random walk, and a set of randomly selected
poses.
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Fig. 6. Results showing how the measures change with each iter-
ation (as indexed by log(MAP) values) of the Baum Welch algo-
rithm on the training data. %−1 is the ICN, R(v | b) is the residual
information of the Viterbi solution given the Bayesian classi4er
solution, and s:1 is the 4rst element of the residual sum vector
corresponding to state 1.

5.1. Deterministic walk

In the deterministic walk, the sequence of hand poses was
completely predictable. Starting from the neutral pose of the
hand, each position of the roll, pitch and yaw is moved to
its next position until the maximum range of motion was
reached. The motion then reversed in a backward fashion.
Fig. 7 shows nine frames of the sequence.

We generated two 1000 length sequences and stored both
the ground truth data (i.e. the actual pitch) as well as the

Fig. 7. The gesture training data. Nine sequential (top left to lower
right order) frames of a video sequence used in the deterministic
movement condition.

observations (the aspect ratio of the silhouette) for each
frame of the sequence: one sequence for training and one
for testing. Initial estimates of the HMM were then obtained
using the moving window method. We then used the Baum
Welch procedure. Initially, we partitioned the observation
range into 4ve equal aspect ratio ranges. This produced the
following HMM:

A=




0:0 1:0 0:0 0:0 0:0

0:5 0:0 0:5 0:0 0:0

0:0 0:5 0:0 0:5 0:0

0:0 0:0 0:5 0:0 0:5

0:0 0:0 0:0 1:0 0:0



;

B =




1:0 0:0 0:0 0:0 0:0

1:0 0:0 0:0 0:0 0:0

0:0 1:0 0:0 0:0 0:0

1:0 0:0 0:0 0:0 0:0

1:0 0:0 0:0 0:0 0:0



: (27)

� = [0:06 0:13 0:62 0:13 0:06]: (28)

If we calculate the ICN of the augmented matrix A |B, we
obtain 0:23 indicating that the HMM is not ideal. The resid-
ual sum of the matrix is

R1 = [0:5 0:6 0:4 0:6 0:5 0:3 0:9 0:0 0:0 0:0]: (29)

This indicates that only the 4rst 2 observation symbols are
useful (recall that the 4rst 4ve elements of R1 refer to the
HMM states), and that the rest could be discarded. ClearlyR1

7
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(4rst symbol is R1
1) performs better than R1

6 and the over-
all prediction accuracy is 63%. In turn, the HMM could be
improved by re4ning symbol R1

6 and removing symbols R1
8,

R1
9, R

1
10. We could possibly also improve the states some-

what by adding new states; however, this is diCcult to do
meaningfully in a supervised learning situation such as this
one. However, in other situations where the states have no
particular meaning, state splitting or merging could also be
performed as is typically done in previous algorithms for
improving HMM topology.

We then split R1
6 into three distinct symbols (by creating

3 equally sized bins to cover the original) and removed R1
8,

R1
9 and R1

10 resulting in 4 observation symbols (four new
attribute ranges). Re-estimating a new HMM results in

B =




1:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 1:0 0:0

0:0 0:0 0:0 0:0 1:0

1:0 0:0 0:0 0:0 0:0

1:0 0:0 0:0 0:0 0:0



: (30)

This gives an ICN of 0:34 and a residual sum vector of

R2 = [0:4 0:7 0:5 0:7 0:6 0:4 0:0 0:8 0:9]: (31)

This HMM results in a perfect prediction accuracy of 100%
on the test sequence. The role of the Markov component
of the HMM is measured by the residual information. In
this case we found that H (v) = 2:25, H (v | b) = 0:75 and
so R(v | b) = 1:5 or 33% (100 ∗ H (V=B)=H (V )) of the
information was contained within the A matrix (and the
associated Viterbi algorithm) in predicting the optimal
state sequence. This result is consistent with the results
of the Bayes classi4er, alone, which is only 75% cor-
rect compared to the complete Viterbi solution of 100%
correct.

5.2. Random walk

In the second example, we have performed a random
walk over each of the degrees of freedom of the hand:
given the current pose there is an equal probability of
stepping one step forward or one step backward on each
degree of freedom (roll, pitch or yaw). This is a much
more diCcult problem than the previous one as each
pitch pose may occur with any combination of roll or
yaw poses. Again estimating an HMM using the moving
window technique and then applying the Baum Welch
algorithm to produce a 4nal estimate, produces the fol-
lowing HMM with 4ve equally distributed observation

symbols:

A=




0:46 0:54 0:00 0:00 0:00

0:45 0:00 0:55 0:00 0:00

0:00 0:53 0:00 0:47 0:00

0:00 0:00 0:46 0:00 0:54

0:00 0:00 0:00 0:55 0:45



;

B =




0:74 0:26 0:0 0:0 0:0

0:90 0:10 0:0 0:0 0:0

0:67 0:33 0:0 0:0 0:0

0:89 0:05 0:04 0:03 0:0

0:86 0:14 0:0 0:0 0:0



; (32)

� = [0:20 0:16 0:30 0:14 0:20]: (33)

The ICN for this HMM is 0:13 which indicates correlations
and redundancies within the model with a characteristic low
prediction performance of 29% correct on the test data. The
residual sum is

R1 = [0:4 0:4 0:5 0:4 0:4 0:1 0:1 0:0 0:0 0:0]: (34)

Given the relatively better discriminatory power of the ob-
servation symbols (last 5 components of R1) we split the 4rst
and second symbols into three new symbols each, leaving
the third and fourth symbols and deleting the 4fth symbol.
The 4fth symbol does not appear in the training data and
it can be trivially deleted, the third and fourth symbols do
appear in the data but very rarely, and we have maintained
them for completeness. After rerunning the estimation mode,
we obtained an ICN of 0:19, and a residual sum vector of

R2 = [0:5 0:5 0:5 0:5 0:4 0:2 0:2

0:1 0:2 0:1 0:0 0:1 0:1] (35)

and prediction performance of 40% correct.
Continuing this process for three more iterations, resulted

in an ICN of 0:28 and a prediction performance of 75% cor-
rect with 34 observation symbols. The actual matrix is not in-
cluded for the sake of brevity. In this 4nal case, H (v)=2:32,
H (v | b) = 1:59 and R(v | b) = 0:73 or 69% of the informa-
tion was contained in the A matrix in predicting the optimal
state sequence. This is con4rmed since the ML classi4er
performed at 50% correct prediction, signi4cantly less than
the complete HMM (75%).

5.3. Random poses

For the random poses case, at each frame a random pose
for the hand is chosen. Unlike the previous examples, one
would expect no contribution from the Markovian element
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of the HMM. Using a similar approach to that followed
in the above examples (starting with 4ve initial symbols
and progressively re4ning the appropriate ones), after four
iterations we arrive at an HMM with an ICN of 0:11 and a
residual sum of:

R4 = [0:1 0:1 0:1 0:0 0:1 0:3 0:2 0:3 0:1 0:2 0:2

0:1 0:1 0:2 0:1 0:3

0:2 0:1 0:0 0:1 0:1 0:2

0:2 0:1 0:1 0:0 0:0 0:2 0:0 0:1]:

So clearly, this is an extremely diCcult problem. In fact, the
prediction performance is 49% correct. In this case we found
that H (v) = 2:06, H (v | b) = 0:56 and so R(v | b) = 1:5 or
27% of the information was contained within the A matrix
in predicting the optimal state sequence—indicating that the
Markov component of the HMM is not helping and this is
con4rmed by the performance of the Bayes classi4er at 44%
correct—quite close to the performance of the full HMM.

6. Recognizing hand gestures

As a further example of the utility of our techniques,
we consider the problem of using HMMs to recognize two
di3erent classes of hand gestures [11], deictic and symbolic.
Deictic gestures are pointing movements toward the left of
a body-face space, and symbolic gestures, such as click and
rotate, are used to indicate commands. We have used the
same data as in [11] which is available at
http://www.idiap.ch/∼marcel/Databases/main.

html.
The data consists of 2D trajectory information of the rele-

vant gestures normalized to the user’s body space. There are
many independent observation sequences for each gesture
class. Fig. 8 shows a plot of the training data used in this
paper. This problem is signi4cantly di3erent than the previ-
ous problems we have studied. Speci4cally, it is a recogni-
tion problem rather than an estimation/prediction problem,
the input data is two-dimensional and the states are truly

Fig. 8. Distribution of gesture trajectories.

hidden. Nevertheless, we can perform a similar analysis as
previously, except this time we need to produce 2 HMMs
—one for each gesture class. We train each HMM on its
relevant training data and then test it using an independent
evaluation set as did [11]. At recognition time, an unknown
observation sequence is assigned to the most likely class
according to the probability of the sequence given each of
the two HMMs.

Starting with a simple 2 × 2 binning of the observation
data and 10 hidden states, we choose appropriate observation
symbols to split or merge (in a quad-tree fashion) using our
residual vector as a guide. In this manner, we proceed from
the initial observation symbol map shown in Fig. 9(a) to the
map shown in Fig. 9(b). The recognition rate improves from
86.8% to 94.8%, and the ICN for the deictic HMM improves
from 0.01 to 0.05, and for the symbolic HMM from 0:02 to
0:06. If we increase the number of hidden states to 20, we can
further improve the performance to 97:1%. Curiously, the
ICN with 20 states (0:03 and 0:05 for deictic and symbolic
respectively) was worse than with 10, although the residual
vector indicated that having 20 states was just as appropriate
as having 10. The state residual vectors were:

R10 = [0:2 0:2 0:2 0:2 0:2 0:3 0:2 0:2 0:2 0:3]T (36)

and

R20 = [0:2 0:2 0:2 0:2 0:2 0:1 0:2 0:2 0:2 0:2 0:2

0:2 0:2 0:3 0:2 0:2 0:2 0:2 0:2 0:3]T: (37)

The problem with using the ICN in this case is that it does
not take into account the di3erences between HMMs, but
rather treats each HMM independently. Nevertheless, both
HMMs are poorly conditioned which questions the two ges-
ture classes de4ned by Marcel et al. [11]. Even so, our re-
sults compare favourably with [11], who reports recogni-
tion rates of 98:3% using an Input/Output HMM (IOHMM),
rather than our simpler ergodic model.

In terms of information content, for the deictic HMM, we
haveH (v)=3:69,H (v | b)=2:05andso R(v | b)=1:64 or 56%
of the information was contained within the Amatrix. For the
symbolic HMM H (v)=2:9, H (v | b)=1:84 and so R(v | b)=
1:06 or 63% of the information was contained within the A
matrix. Indicating that both HMMs utilize both the Markov
chain and the observation data in signi4cant ways.

7. Speech recognition

As a 4nal example, we show how our techniques can be
used to aide the choice of HMMs for more complex recogni-
tion tasks. In this case we look at a simpli4ed speech recog-
nition task using a subset of the ISOLET database which is
available on the web at:
http://www.cslu.ogi.edu/corpora/download/ISO

LET sample.zip

http://www.idiap.ch/~marcel/Databases/main.html
http://www.idiap.ch/~marcel/Databases/main.html
http://www.cslu.ogi.edu/corpora/download/ISOLET_sample.zip
http://www.cslu.ogi.edu/corpora/download/ISOLET_sample.zip
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Fig. 9. Left: Initial Observation Map. Right: Final Observation Map derived from the re4nement method.

This database contains recordings of 13 speakers utter-
ing each letter of the alphabet twice. The raw data was pro-
cessed in the same manner as [12]. That is, the speech data
was partitioned into 20 ms frames where subsequent frames
overlapped by 10 ms. A 28-dimensional feature vector con-
sisting of 14 Mel-scaled FFT cepstral coeCcients (MFCC)
and their 4rst-order time derivatives were extracted from
each frame and these were subsequently clustered into 16
distinct observation symbols. The processing was performed
using the publicly available HTK software:
http://htk.eng.cam.ac.uk/
Since the database was small the letters were grouped

according to similar sounds in a manner similar to [12].
That is, we used four multi-letter sets: {b; c; d; g; p; t; v; z},
{a; k; j}, {i; r; y} and {m; n}, and the remainder of the let-
ters formed individual recognition categories resulting in a
13-class recognition problem. A separate left–right HMM
was created for each of the 13 classes and we used the
Viterbi log(MAP) score to determine class labels on inde-
pendent test sequences. We used the 4rst utterance of each
speaker for training and the second utterance for testing.

Assuming the observation quantization to be reasonable,
then we could only modify the number of states to examine
performance. In this case we considered 5; 10; 15; 20; 25; 30
state models. Although recognition rate was the most im-
portant model selection variable, the ICN and mutual infor-
mation measures were used to discriminate between HMMs
with similar recognition rates.

More formally, we have 13 classes, Ci ∈C, each of which
has 26 training examples which were split into 13 training
(Strain(Ci)) and 13 testing (Stest(Ci)) examples. For the 13
training examples, we trained 6 HMMs, �nCi , where Ci ∈C

Table 1
Decision variables for choosing the best HMM for character set
{a; k; j}
States Recognition rate ICN H (v | b)=H (v)

5 0.72 0.300 0.35
10 0.72 0.107 0.38
15 0.90 0.034 0.33
20 0.87 0.037 0.32
25 0.87 0.059 0.34
30 0.87 0.026 0.37

and n∈ {5; 10; 15; 20; 25; 30} indicates the number of states
in the HMM. The recognition rate, Rn

Ci , of �
n
Ci was calculated

with respect to other HMMs with the same number of states.
That is:

Rn
Ci =

1
N

∑
ej∈Stest (Ci)

1i(Fn(ej)); (38)

where Fn(ej) is the classi4cation function given by

Fn(ej) = arg max
Ci∈C

P(O | �nCi ); (39)

and 1i(j) is the Kronecker delta function:

1i(j) =

{
1 if i = j;

0 otherwise:
(40)

As an example, consider Table 1. First, models with 5 or 10
states were removed due to low recognition rates. The ICN
for 25 states was quite signi4cant since we expect the ICN

http://htk.eng.cam.ac.uk/
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Table 2
Decision variables for choosing the best HMM for character {l}
States Recognition rate ICN H (v | b)=H (v)

5 0.85 0.337 0.26
10 0.77 0.120 0.31
15 0.92 0.027 0.33
20 0.69 0.040 0.31
25 0.77 0.043 0.38
30 0.77 0.035 0.40

to decrease as the number of states increases. For this rea-
son, we might choose the 25 state HMM as the best since
the di3erence over the other variables is insigni4cant. Table
2 shows another example. The main contenders were the 5
or 15 state HMMs. The mutual information scores do not
signi4cantly discriminate between the two, but the ICN is
very poor for a 15 state HMM, and hence we would choose
the 5 state model as, by de4nition,the larger the ICN score
the more independent are the states and observations to each
other. We can continue in this manner to judiciously choose
HMMs for each of the character sets. After choosing the
“optimal” HMMs, we can calculate a new recognition rate
in a manner similar to Eqn. 38 except that the �Ci ’s may
have any number of states. This results in an average recog-
nition performance for all classes, Ci, of 0.831 and shows
a marginal improvement over simply using the recognition
performance as the sole decision variable which results in
an average recognition rate of 0.825. The di3erence is prob-
ably not signi4cant for this example, but illustrates that the
ICN and mutual information measures can provide a princi-
pled method of tie-breaking when other decision variables
do not produce signi4cant di3erences.

8. Discussion

In this paper we have explored three tools for the diag-
nosis of HMMs. The condition number identi4es from the
A and B matrices how successful a given HMM is likely to
be at generating correct state sequences. The residual sum
matrix identi4es which states or observation symbols need
to be re4ned or removed from the model to improve it. The
last measure based on mutual information identi4es if the
HMM is likely to do any better than a simple Bayesian clas-
si4er (ML) using the B matrix alone. The 4rst and last mea-
sures are somewhat independent and identify di3erent (but
overlapping) areas of HMM usefulness. The tools are also
powerful—they not only identify if a given HMM is useful
or not, but also identify exactly what the problem is if an
HMM is not performing well.

Furthermore, as demonstrated in Section 5, the practi-
tioner can follow a methodical routine to improve an HMM.
It seems quite likely that this pruning and splitting routine
could be automated and we intend to pursue this in future.
Other avenues to pursue is to extend the analysis to be able to

cope with continuous observation densities explicitly (rather
than by quantization as in the examples above), and to ex-
tend the analysis to coupled HMMs.

We have noted the importance of the matrix ATB in the
analysis of HMMs but did not develop the idea further, fo-
cusing instead on the augmented matrix A |B. We are con-
tinuing to investigate the theoretical importance of ATB and
how it can be used to more precisely measure the interaction
between the two component matrices.

What is concluded about the prediction or estimation of
sequences also holds for the uses of HMMs for temporal pat-
tern recognition and the current measures inform the user as
to the degree to which the HMM recognition performance is
predictable from the ML classi4er, the Markov component,
or both.

9. Summary

This paper addresses three problems that are rarely dis-
cussed in the use of hidden Markov models for pattern
recognition and prediction. One addresses the question as
to why a well-4tting HMM does not perform adequately
as a classi4er or predictor? The second issue, and related
to the above question, is the reporting and analysis of the
model parameters that fall into two basic components on
the HMM: the memory (Markov) model and the observa-
tion model. Without knowing these values we show how it
can be misleading to conclude anything about whether the
HMM is the appropriate way of describing the data. Finally,
using standards techniques from Linear Algebra and Infor-
mation Theory we propose some measures for how these
parameters contribute to performance and an algorithm for
improving the model topology.
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