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Technical note

On calculating the finite centre of rotation for
rigid planar motion
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Abstract

In this technical note, a simpler least squares derivation for calculating the angle of rotation and finite centre of rotation of a set of marker
points undergoing rigid planar rotation and translation is shown. The major advantage of the approach, other than the simple derivation, is the
automatic inclusion of the calculation of a scaling factor between the two point sets - the calculation of which was not obvious in previous
approaches [Challis J. Estimation of the finite center of rotation in planar movements. Med Eng Phys 2001;23(3):227–33, Spoor C, Veldpaus
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. Rigid body motion calculated from spatial coordinates of markers. J Biomech 1980;13:391–3]. The final numerical calculations a
o those of [Challis J. Estimation of the finite center of rotation in planar movements. Med Eng Phys 2001;23(3):227–33] and ar
mplement. A matlab routine for computing the two quantities, and the scaling factor, is included. We demonstrate the method on
xample using lateral radiographs of the lumbar spine.
2004 IPEM. Published by Elsevier Ltd. All rights reserved.
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. Introduction

The finite centre of rotation (FCR) is a common measure-
ent used for clinical diagnosis of joint function[1] including

pine problems[3,4]. The FCR is often used as an approxi-
ation to the centre of rotation of a joint, and can be defined
s the point which is unchanged by a rigid transformation

nvolving a translation and a rotation. Such a transformation
an be completely described by the FCR and an angle of ro-
ation. The method of[5] is probably the best known of the
echniques and despite its suboptimal error handling perfor-
ance ([6]), it is still often the method of choice due to its

implicity ([7]). Other more robust techniques have also been
roposed including those of[1,6,8]. Most of these use var-

ous least-squares formalisms with the method of[1] being
he method of choice for 2D in the plane rotations with an
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axis of rotation orthogonal to the image plane. If the axi
rotation is not known, more complicated procedures suc
those of[2,9,10] are available. However, the derivation
such methods is quite complex and regardless, as pointe
by [1] there is still a need for simple methods with a kno
axis of rotation. It is the method of[1] which we focus on in
this paper. It is essentially a 2D simplification of the met
of [9]. In our case we do not assume an a priori known r
body configuration as in[1,9], since in some applications
is impractical to obtain such knowledge, when, for ex
ple, marker points are estimated from bone features in r
graphs ([11,12]). The methods of[1,9] are easily adapted
the situation where there is no rigid body coordinate sys
In this note we offer a trivial least squares derivation of
angle of rotation that explicitly provides a measure for
amount of scaling involved in the transformation and a c
plete matlab implementation of the method. These met
are essentially simplifications of the method of[10] for 2D
rotations.
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2. Method

2.1. Calculating the angle of rotation

In [1], the optimal rotation is calculated as a two-step pro-
cess. First, the rotation from rigid-body reference frame to
inertial frame is calculated in both sets of markers. Then the
rotation from one set of points to the other is calculated in a
second step. However, in many 2D applications, a rigid frame
of reference is unnecessary and the problem can be reformu-
lated using markers measured at two points in time,t1 and
t2.

Consider a rigid body undergoing a rotation and a transla-
tion from timet1 to timet2. Then in a single inertial reference
frame, the coordinates of marker points on the rigid body are
related by the equation:

pi(t2) = R(θ)pi(t1) + v, (1)

wherepi(tj) ∈ P(tj) are the coordinates of marker pointi at
time tj, R(θ) is a 2× 2 rotation matrix, given by:

R(θ) =
[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, (2)

andv is the translation vector of the transformation.
Rather than the explicit least squares derivation of[1], here
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a = x + ıy, andθ can be extracted simply asθ = tan−1(y/x).
The translation vectorv, can then be calculated usingEq. (1).

The actual calculations performed are similar to those of
[1], however the derivation is conceptually simpler. Also we
now have a natural measure of contraction/expansion of the
two sets of marker points. Theoretically,a should be a unit
complex number - that isx2 + y2 = 1, however, in practice,
this will not be exactly true and thus provides a measure of
departure from unit scaling. Such an observation is less clear
with the derivation of[1] and needed to be explicitly included
in the least squares formulation of[10].

The use of the pseudo-inverse produces a solution that
minimises the Euclidean distances between the point setF

and the setaE [13]. As such it is robust to small deformations
in the point sets that might arise from measurement error or
imaging artefacts. Large deformations are likely to produce
scale factors very different to unity. Alternatively we can use
the least-squares residual[13] as an indication of the depar-
ture from rigid motion:

ρ = ‖(I − EE∗)F‖ (7)

Further, we can calculate the FCR using the knowledge
that it is unchanged by the transformation in a similar fashion
to [8]. That is:

f = Rf + v, (8)
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se of complex numbers instead of 2D coordinates. Firs

orm two mean adjusted complex vectors:

=




c1(t1) − µ(t1)

c2(t1) − µ(t1)
...

cnt1 − µ(t1)


 , E =




c1(t2) − µ(t2)

c2(t2) − µ(t2)
...

cn(t2) − µ(t2)


 (3)

hereck(ti) = xk(ti) + ıyk(ti), pk(t1) = (xk(ti), yk(ti)), and
(ti) = ∑

ci(ti)/n is the mean of the marker points at ti
i.

To find the rotation,θ, that will maximally align one matri
ith the other we wish to find the least squares solutio

he following equation:

= eıθE, (4)

ince a rotation in the complex plane is specified by a m
lication with a unit complex number. Alternatively, we c
rite:

= aE, (5)

herea is the (complex) parameter that we can estimate
traightforward manner using least squares techniques

= E∗F (6)

hereE∗ is the pseudo-inverse ofE and can be calculate
rom the singular value decomposition (SVD). SinceEandF
re complex vectors, in generala will be a complex numbe
r

= (I − R)−1v, (9)

hereI is the 2× 2 identity matrix. The right hand side
q. (9) can be solved symbolically ([8]), giving the following
olution:

=




1

2
(xv − yv

tan(θ2)
)

1

2
(yv + xv

tan(θ2)
)


 (10)

q. (8) is the 2D equivalent to the 3D condition descri
y [2](Eq. (26)) and the derivation is significantly simp
he final calculations are similar to those used by[9] and[1]
hich were based on the derivation of[2].

. Clinical example

The development of this method has been motivate
need for estimating the FCR of lumbar spinal motion
ents of patients with lower back pain in order to charact
ifferences that may be associated with these patients
ared with normal subjects. Two lateral radiographs of
atient in full extension and full flexion were used for ca

ating the FCR. We use the protocol established by[14,15]
or locating four feature points per vertebra which can the
sed for calculating the FCR. Although[14,15]did not cal-
ulate the FCR in their work, we have used their feature p
etection protocol since this is the most rigorously studie
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Fig. 1. An example radiographs and the associated feature points. (a) Extension image; (b) Flexion image.

terms of errors and is the current best practice method in the
literature.Fig. 1 shows an example of the extracted feature
points according to the method of[14,15].

The results for the FCR calculations on 32 patients for
vertebra L2 is shown inFig. 2. Each vertebra is placed in the
coordinate system of the vertebra below prior to the calcula-
tion of the FCR. The average scale factor was 0.9946 with a
standard deviation of 0.0197 indicating that for these exam-
ples, the transformation between flexion and extension radio-
graphs is very close to rigid motion. This is further verified
by a very small mean residual error of 0.0775. Full clinical
analysis of these results is beyond the scope of this technical
note and will be published subsequently.

4. Discussion

In this technical note, we have shown a simpler derivation
for calculating the angle of rotation of a set of marker points
undergoing rigid planar rotation and translation. The ma-
jor advantage of the approach, other than the simple deriva-
tion, is the automatic inclusion of the calculation of a scal-
ing factor between the two point sets - the calculation of
which was not obvious in previous approaches ([1,2]). The
final numerical calculations are similar to those of[1] and
are trivial to implement. A matlab routine for computing
the two quantities, and the scaling factor, is included as
Appendix A.

tless si
Fig. 2. FCR results for L2. The dimensions are uni
 nce they are normalised by the height of the vertebra below.
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Appendix A. Matlab code

function [fcr, theta, scale] = calcFCRTheta(E, F)
% [fcr, theta, scale] = calcFCRTheta(E, F)
% calculate the finite centre of rotation, the angle of rotation,
% and the scale factor
% Input: E , F - lists of 2D corresponding points. These are n by 2 matrices
% where n is the number of points and the x val is in column 1
% y val in column 2.
% Output: fcr - the finite centre of rotation.
% theta - the angle of rotation between the two sets of points
% about the fcr.
% scale - the scale factor between the two pointsets
% first do some error checking
[rE, cE] = size(E);
[rF, cF] = size(F);
if (cE ∼= 2) | (cF ∼= 2)

error(‘E, F should be an nx2 matrix’)
end
if (rE ∼= rF)

error(‘matrices E and F are of different size’)
end
% complexify the data
A = E(:,1) + E(:,2)*i;
B = F(:,1) + F(:,2)*i;
% calculate the mean of each of the pointsets
meanA = sum(A)/rE;

meanB = sum(B)/rF;
% now translate both pointsets to the origin
A2 = A - meanA;
B2 = B - meanB;
% now find the least squares solution to the rotation between A and B
x = pinv(B2)*A2;
theta = angle(x);
scale = abs(x);
% the optimal rotation matrix
R = [cos(theta), -sin(theta); sin(theta), cos(theta)];
% the optimal translation vector
v = [real(meanA) imag(meanA)] - [real(meanB) imag(meanB)]*R’;
% calculate the fcr
fcr(1,1) = (v(1,1)-v(1,2)*cot(theta/2))/2;
fcr(2,1) = (v(1,2)+v(1,1)*cot(theta/2))/2;
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