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Abstract

In this technical note, a simpler least squares derivation for calculating the angle of rotation and finite centre of rotation of a set of marker
points undergoing rigid planar rotation and translation is shown. The major advantage of the approach, other than the simple derivation, is the
automatic inclusion of the calculation of a scaling factor between the two point sets - the calculation of which was not obvious in previous
approaches [Challis J. Estimation of the finite center of rotation in planar movements. Med Eng Phys 2001,;23(3):227-33, Spoor C, Veldpaus
F. Rigid body motion calculated from spatial coordinates of markers. J Biomech 1980;13:391-3]. The final numerical calculations are similar
to those of [Challis J. Estimation of the finite center of rotation in planar movements. Med Eng Phys 2001;23(3):227-33] and are trivial to
implement. A matlab routine for computing the two gquantities, and the scaling factor, is included. We demonstrate the method on a clinical
example using lateral radiographs of the lumbar spine.
© 2004 IPEM. Published by Elsevier Ltd. All rights reserved.
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1. Introduction axis of rotation orthogonal to the image plane. If the axis of
rotation is not known, more complicated procedures such as
The finite centre of rotation (FCR) is a common measure- those of[2,9,10] are available. However, the derivation of
ment used for clinical diagnosis of joint functif] including such methods is quite complex and regardless, as pointed out
spine problem¢3,4]. The FCR is often used as an approxi- py [1] there is still a need for simple methods with a known
mation to the centre of rotation of a joint, and can be defined gxis of rotation. It is the method 1] which we focus on in

as the point which is unchanged by a rigid transformation tnjs paper. It is essentially a 2D simplification of the method
involving a translation and a rotation. Such a transformation ¢ [9]. In our case we do not assume an a priori known rigid
can be completely described by the FCR and an angle of ro-pody configuration as ift,9], since in some applications it
tation. The method df5] is probably the best known of the 5 impractical to obtain such knowledge, when, for exam-
techniques and despite its suboptimal error handling perfor- e, marker points are estimated from bone features in radio-
mance [6]), it is still often the method of choice due to its graphs [11,12). The methods of1,9] are easily adapted to
simplicity ([7]). Other more robust techniques have also been the situation where there is no rigid body coordinate system.
proposed including those ¢1,6,8]. Most of these use var- | this note we offer a trivial least squares derivation of the
ious least-squares formalisms with the methodldfbeing  angle of rotation that explicitly provides a measure for the
the method of choice for 2D in the plane rotations with an amount of scaling involved in the transformation and a com-
plete matlab implementation of the method. These methods
are essentially simplifications of the method[®0] for 2D
rotations.
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2. Method a = x + 1y, andd can be extracted simply 8s= tan—1(y/x).
_ _ The translation vectar, can then be calculated usikg. (1.
2.1. Calculating the angle of rotation The actual calculations performed are similar to those of

[1], however the derivation is conceptually simpler. Also we

In [1], the optimal rotation is calculated as a two-step pro- now have a natural measure of contraction/expansion of the
cess. First, the rotation from rigid-body reference frame to two sets of marker points. Theoreticallyshould be a unit
inertial frame is calculated in both sets of markers. Then the complex number - that is? 4+ y2 = 1, however, in practice,
rotation from one set of points to the other is calculated in a this will not be exactly true and thus provides a measure of
second step. However, in many 2D applications, arigid frame departure from unit scaling. Such an observation is less clear
of reference is unnecessary and the problem can be reformuwith the derivation of1] and needed to be explicitly included
lated using markers measured at two points in time&nd in the least squares formulation [d0].
1. The use of the pseudo-inverse produces a solution that

Consider arigid body undergoing a rotation and a transla- minimises the Euclidean distances between the poinFset
tion from timery to timer,. Thenin a single inertial reference  and the set E [13]. As such it is robust to small deformations
frame, the coordinates of marker points on the rigid body are in the point sets that might arise from measurement error or
related by the equation: imaging artefacts. Large deformations are likely to produce
scale factors very different to unity. Alternatively we can use

. =R . 1 . .. .
pilt2) ©)pifta) + v, @) the least-squares resid|aB] as an indication of the depar-
wherep;(t;) € P(t;) are the coordinates of marker poirit ture from rigid motion:
timet;, R(f) is a 2x 2 rotation matrix, given by: p=I(I — EE¥)F| @)

Further, we can calculate the FCR using the knowledge
thatitis unchanged by the transformation in a similar fashion
to[8]. That is:

R() = 2

cosP) —sin@)
sin@) cosp)

anduv is the translation vector of the transformation.
Rather than the explicit least squares derivatidqdphere f=Rf+v, (8)
we show a simpler and more elegant derivation that makesq,
use of complex numbers instead of 2D coordinates. First, we 1
form two mean adjusted complex vectors: f=U=R)", (©)

wherel is the 2x 2 identity matrix. The right hand side of

t1) — u(t 12) — pir
ca(a) — u(t) caf2) — ult2) Eq. (9 can be solved symbolicallyg]), giving the following
c2(t1) — u(tr) c2(t2) — pulr2) solution:
: : 1 )
' ' 2 tan(g )
oty — (1) ealt2) — 1(r2) Fo xf) (10)
where ci(t;) = xi(t:) + tye(ti), pi(tr) = (xx(t:), yi(2:)), and E(y” + m)
u(t) = ci(t;)/n is the mean of the marker points at time 2
t. Eq. (8 is the 2D equivalent to the 3D condition described

Tofind the rotationg, that will maximally align one matrix by [2](Eg. (26)) and the derivation is significantly simpler.
with the other we wish to find the least squares solution to The final calculations are similar to those used%jyand[1]
the following equation: which were based on the derivation[af.

F=¢"E, 4)

since a rotation in the complex plane is specified by a multi- 3. Clinical example

plication with a unit complex number. Alternatively, we can

Write- The development of this method has been motivated by

a need for estimating the FCR of lumbar spinal motion seg-
F =aE, (5) ments of patients with lower back pain in order to characterise
differences that may be associated with these patients com-

whereais the (complex) parameter that we can estimate in a pared with normal subjects. Two lateral radiographs of each
straightforward manner using least squares techniques:  patient in full extension and full flexion were used for calcu-
4= E*F ©6) lating the FCR. We use the protocol established1,15]

for locating four feature points per vertebra which can then be
where E* is the pseudo-inverse & and can be calculated used for calculating the FCR. Althoudb4,15]did not cal-
from the singular value decomposition (SVD). SificendF culate the FCR in their work, we have used their feature point
are complex vectors, in genetaWwill be a complex number,  detection protocol since this is the most rigorously studied in
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(b)

Fig. 1. An example radiographs and the associated feature points. (a) Extension image; (b) Flexion image.

terms of errors and is the current best practice method in the4. Discussion

literature.Fig. 1 shows an example of the extracted feature

points according to the method [df4,15] In this technical note, we have shown a simpler derivation
The results for the FCR calculations on 32 patients for for calculating the angle of rotation of a set of marker points

vertebra L2 is shown ifig. 2 Each vertebra is placed in the undergoing rigid planar rotation and translation. The ma-

coordinate system of the vertebra below prior to the calcula- jor advantage of the approach, other than the simple deriva-

tion of the FCR. The average scale factor w&39@6 with a tion, is the automatic inclusion of the calculation of a scal-

standard deviation 0f.0197 indicating that for these exam- ing factor between the two point sets - the calculation of

ples, the transformation between flexion and extension radio-which was not obvious in previous approach@s?]). The

graphs is very close to rigid motion. This is further verified final numerical calculations are similar to those[df and

by a very small mean residual error aD@75. Full clinical are trivial to implement. A matlab routine for computing
analysis of these results is beyond the scope of this technicalthe two quantities, and the scaling factor, is included as
note and will be published subsequently. Appendix A
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Fig. 2. FCR results for L2. The dimensions are unitless since they are normalised by the height of the vertebra below.



DTD 5

4 McCane et al. / Medical Engineering & Physics xxx (2004) XXXx—XxX

Appendix A. Matlab code

function [fcr, theta, scale] = calcFCRTheta(E, F)
% [fcr, theta, scale] = calcFCRTheta(E, F)

% calculate the finite centre of rotation, the angle of rotation,

% and the scale factor

% Input: E , F - lists of 2D corresponding points. These are n by 2 matrices

% where n is the number of points and the x val is in column 1
% y val in column 2.

% Output: fcr - the finite centre of rotation.

% theta - the angle of rotation between the two sets of points

% about the fcr.

% scale - the scale factor between the two pointsets

% first do some error checking
[fE, cE] = size(E);
[rfF, cF] = size(F);

if (CcE ~=2)| (cF ~=2)

error(‘'E, F should be an nx2 matrix’)
end
if rE ~=rF)

error('matrices E and F are of different size’)
end
% complexify the data
A E(,1) + E(C,2)%;
B FG,1) + F(G,.2)%;
% calculate the mean of each of the pointsets
meanA = sum(A)/rE;
meanB = sum(B)/rF;
% now translate both pointsets to the origin
A2 = A - meanA,
B2 = B - meanB;

% now find the least squares solution to the rotation between A and B

X = pinv(B2)*A2;

theta = angle(x);

scale = abs(x);

% the optimal rotation matrix

R = [cos(theta), -sin(theta); sin(theta), cos(theta)];
% the optimal translation vector

v = [real(meanA) imag(meanA)] - [real(meanB) imag(meanB)]*R’;

% calculate the fecr
fer(1,1) = (v(1,1)-v(1,2)*cot(theta/2))/2;
fcr(2,1) = (v(1,2)+v(1,1)*cot(theta/2))/2;
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