On Training Cascade Face Detectors

Brendan McCane
Department of Computer Science

Kevin Novins
Department of Computer Science

University of Otago, New Zealand University of Auckland, New Zealand

email: mccane@cs.otago.ac.nz

Abstract

email: novins@cs.auckland.ac.nz

In this paper we present two improvements over Viola and Jones [1] training scheme for face detection. The first
is 300-fold speed improvement over the training method presented by Viola and Jones [1] with a modest increase
in execution time. The second is a principled method for determining a cascade classifier of optimal speed. We

present some preliminary results of our methods.
Keywords: face detection, cascade classifiers

1 Introduction

In their excellent paper, Viola and Jones [1] describe
an extremely fast method for finding faces in images
or video input. The method is very fast (achieving ap-
proximately 15 frames/sec on a 700MHz Pentium I11),
and quite accurate (according to Figure 7 in the paper,
achieving greater than 90% correct detection rate for
only 0.000053% false positives). These are impressive
results. There are three main contributions of their pa-
per: use of an integral image to rapidly evaluate simple
features; using the AdaBoost [2] boosting algorithm to
improve the effectiveness of simple classifiers on the
simple features; using a cascade of AdaBoost classi-
fiers to quickly eliminate most non-faces from consid-
eration.

There are two main limitations to Viola and Jones [1]
work. Firstly, the training algorithm they use is ex-
tremely slow. To find the best feature at any stage in the
cascade, they perform an exhaustive search over every
possible feature. In fact, their final classifier makes
use of approximately 6000 features, and was trained
using approximately 20, 000 training images. Since at
each stage they need to search through 180,000 fea-
tures for each training image, the training procedure
requires 180000 x 6000 x 20000 = 2.16 x 102 feature
evaluations. Although Viola and Jones [1] do not report
training time in their papers, in our implementation,
using 126, 000 features and approximately 20000 train-
ing images, the method would take on the order of one
year on a 2GHz Pentium IV. Such a long training time
provides a large impediment to the general adoption of
such techniques - as it is extremely difficult to test new
theories or algorithms, or even verify Viola and Jones
[1] results.

Secondly, their method for determining the target false
positive rate at each stage in the cascade is ad hoc. Vi-
ola and Jones [1] specify a priori the required false pos-
itive rate at each stage of the cascade, alternatively, one
could set the maximum number of simple classifiers

within each stage. In both cases, it appears the required
number is set based on heuristics or experience with
the problem at hand. However, there is a clear function
to minimise in this case and that is the final speed of
the classifier. If we can model the behaviour of the
classifier, then we can find an optimal solution, in terms
of classifier speed. It is these two aspects of training a
cascade classifier which we address in this paper.

2 Fast(er) Feature Selection

In Viola and Jones [1] there are only 5 basic types of
features which are displayed in Figure 1(a). The com-
plete set of features (180,000 according to Viola and
Jones [1] , 126,000 according to us), is generated by
varying the width, height and starting position of each
of these features with respect to a 24x24 window within
an image. The feature set can be parameterised by
four parameters: width, height, and the feature’s offset
within the window. These parameters are displayed in
Figure 1(b). The feature selection method used by Vi-
ola and Jones [1] and adopted here is simply to choose
as the next feature to use that which maximally reduces
the error rate within our cascade. That is, at stage ¢ in
the cascade, set:

fi = arg min E(f;) 1)
fi€d

where § is the set of all possible features, E(f;) =
(np + ny,)/N, and n,, is the number of false positives,
n., is the number of false negatives, and N is the total
number of training examples.

In other words, at each stage we are performing an
exhaustive search over all possible features - a type of
optimisation problem. Since our feature set is parame-
terisable, and our feature selection method is a form of
numerical optimisation - we have a constrained non-
linear optimisation function with integer parameters.
Such a problem is called a constrained non-linear inte-
ger programming problem, for which several solutions

(a) 5 basic features

y

i]h
] :

Window width

Window height

(b) Feature parameters

Figure 1: Simple features

have been proposed - most notably outer approximation
methods [3] or branch and bound methods [4]. How-
ever, such methods typically require at least an ability
to evaluate the objective function at non-integer points
and often assume that the function is of some analytic
form such as being convex. It is not clear how to apply
these methods to our current problem. Instead, we have
developed a simple and fast heuristic for finding a sub-
optimal feature.

The error function, E(f;) appears to be well behaved.
We have evaluated the function at all integer grid points
for each of the five features. This is a four-dimensional
function as shown in Figure 1(b). Figure 2 displays two
two-dimensional slices of the evaluation function for a
two rectangle feature. One in which the origin of the
feature is kept fixed, and the other in which the width
and height of the feature is kept fixed. In both cases,
we see that the function is relatively well behaved and
therefore we expect that our heuristic optimisation pro-
cedure will find good features in most cases.

Our algorithm is deterministic and very simple
and would be amenable to conversion to a non-
deterministic algorithm such as simulated annealing
which we intend to investigate in the future. The
algorithm does a kind of discrete downhill search by
evaluating a points’ immediate neighbours and then

False positive rate

(a) Fixed Origin Slice

(b) Fixed Width and Height Slice

Figure 2: Two-dimensional slices of the error function
to be optimised

moving to the smallest error point. The scale of the
neighbourhood is adjusted to avoid local minima. The
algorithm is as follows:

Algorithm 1 (Heuristic Search)
while —done do
done = true
f= argming co, (5 E(f;)
I—fE(f) < E(fbest)
then fbest = f
s=1
done = false
fi
if done
thens =s%x2
fi

end

Where 91,(f) is a neighbourhood based on the size of
the parameter s:

N(f)={f£I*:2€D(f),I°=[0..5..0]"} (2

where ©(f) is the dimensionality of the parameter vec-
tor f. In a two-dimensional search space, s = 1 would

1 T T T T

T T T T
¢—0-3698(2—3.5807)°.3643
Exhaustive search ~ +

—0-44(2—3.580)°.287 - - - -
Optimisation search

False positive rate
o
o

©
1=}
S

Cost

Figure 3: Some results for classifier cost

produce the normal 4-neighbours for example. Regard-
less of the value of s the neighbourhood function only
returns 4 sites - that is, we do not search all possibilities
within +s from our current position, only those points
at the extremities of the bounding box in the axis direc-
tions. Our search space is 4-dimensional, so there are
16 neighbours in a given neighbourhood.

Figure 3 shows a comparison of the false positive rate
of two AdaBoost classifiers as we add simple classifiers
to the ensemble. In one of the classifiers we use the
exhaustive search technique of Viola and Jones [1] and
in the other we use our optimisation search procedure.
The detection rate is maintained at > 0.99, and an
independent data set is used to generate the false pos-
itive rates. In these examples, the optimisation search
strategy offered a 300-400 fold performance increase.
Finding the approximate best feature using the opti-
misation search requires approximately 500 function
evaluations, versus more than 100,000 with Viola and
Jones [1] method. Our implementation of Viola and
Jones [1] method would literally take one year or more
of training time. Our optimisation method reduces this
time to something more feasible. On the negative side,
the exhaustive search strategy produces superior clas-
sifiers due to finding better features as shown in Figure
3.

Aside from efficiency reasons, another advantage to
parameterising the features is that we can easily define
more complex features with only a modest increase in
training times. For example, we may want to decouple
the feature rectangles so they are not necessarily joined.
We can do this by adding an extra two parameters for
each rectangle in our feature. Training times with Viola
and Jones [1] exhaustive search is exponential in the
number of parameters of the features, so adding more
parameters is computationally impractical. We have
not fully investigated the effects of using more complex
features at this stage, but rather note it as a possible
advantage of the new method.

3 Optimal Cascade Speeds

In our scheme a 320 x 240 pixel image has approxi-
mately 36,000 sub-windows to be classified, of which

only a few contain faces. The central idea of a classifier
cascade is to have relatively simple classifiers that re-
ject a large proportion of negative examples early in the
cascade. Windows that are classified as not a face need
not be considered further, and hence can be rejected
very quickly. Windows that pass the first cascade may
or may not be a face. The second classifier is then used
to reject more of the non-faces, and so on all through
the cascade. Only actual faces, need to pass through all
layers in the cascade. Most windows can be rejected
very early in the cascade. This makes for an efficient
classifier on average. Figure 4(a) shows a cascade clas-
sifier pictorially.

It should be clear that the goal of using a cascade of
classifiers is to improve the average rejection speed of
the classifier. That is the average speed to classify a
given window as a non-face. Since we assume that
there are very few face regions in an image compared to
non-faces, we can ignore the average speed of classify-
ing faces. Recall that each stage of the cascade rejects
a certain proportion of image regions that are passed to
it. Let’s say that cascade stage ¢ rejects the proportion
of 1 — p; of the images passed to it. That is, p; is the
false positive rate of cascade stage . Associated with
each stage is a certain cost of execution, C;. Stage 1
is always executed. Stage 2 is executed only for those
regions that successfully passed through stage 1. That
is, the false positive rate of stage 1 (ignoring actual
faces which also pass through stage 1). Similarly, stage
3 is only executed for those regions which successfully
passed through stages 1 and 2, and so on. This then
gives us a clear expression for the average cost of exe-
cution of the cascade:

Co = Ci+Copi +Cspipa + ... (3)
N i—1

= Ci + Z Ci Hpj (4)
=2 j=1

See Figure 4(b) for a pictorial view of how this works.
We need only minimise equation 4, subject to relevant
constraints, to find the optimal speed classifier.

3.1 Modeling the Component Cost Func-
tion

It should be obvious that the cost of executing a cascade
stage and the false positive rate of that stage are corre-
lated. We would expect from a good classifier, that as
the cost goes up, the false positive rate comes down
(ignoring over-training effects due to insufficient test
data). In fact, this is approximately the behaviour that
we find as shown in Figure 3. It is not exact, because
in the scheme of Viola and Jones [1] , AdaBoost is per-
formed and then in a post-processing step the AdaBoost
threshold is adjusted to achieve the desired detection

image
M0 | AdaBoost1 |22 AdaBoost2 |22 AdeBoosts | AL
nonface nonface nonface
(a) A classifier cascade
P PPy P\PyPy
(1-p) P(1-PR) PPy(1-Py)

(b) Cost of executing the classifier

Figure 4: Classifier cascades

rate on a set of training data. AdaBoost actually op-
timises for the overall error rate which is not exactly
the optimisation we want. What we want is to optimise
for the false positive rate subject to the constraint that
the required detection rate is achieved. As such, some-
times adding a level to the AdaBoost classifier actually
increases the false positive rate. Further, adding new
stages to an AdaBoost classifier will eventually have
no effect when the classifier improves to its limit based
on the training data.

Figure 3 shows a plot of how the cost of execution of
a classifier varies with respect to the false positive rate.
The cost of the classifier is estimated as the sum of the
cost of executing each of the features in the classifier.
In our implementation, for integer features the cost is
3.8 x 1077, 4.9 x 10~7 and 5.2 x 10~7 seconds for
each of 2, 3 or 4 rectangle features respectively on a
Pentium 111 650MHz machine. Also shown in figure 3
is how closely we can model the cost with an exponen-
tial decay function. The exact form of the function we
use is:

K(p) = (=In(p)/a)**/° +b)

where K (p) is the cost required to achieve a false pos-
itive rate of p, and the units of the cost function is
micro-seconds (10~%s). The constants a, b and ¢ were
determined using a non-linear least squares fit. For the
exhaustive search, we have a = 0.3698, b = 3.5897
and ¢ = 0.3643. And for the optimisation search,
a = 0.45 b = 3.5897 ¢ = 0.2869. The constant b is ef-
fectively a minimum penalty term. This reflects the fact
that an AdaBoost classifier typically does not reduce
the false positive rate until at least two classifiers are
boosted. This is due to the post-processing threshold
adjustment scheme. As can be seen from the figure,
the data is quite noisy, again, mostly due to the post-
processing threshold adjustment. However, the trend
of the graph is quite clear.

Of course, the cost of each stage of the cascade is equal
to the cost of getting from the current false positive
rate to the new false positive rate. This cost can be
estimated as follows:

¢ = K([[p) ~ K([T) ©

where p; are the component false positive rates of each
stage in the cascade.

3.2 Optimising the Cost Function

We are now able to optimise equation 4. Rewriting
equation 4, to illustrate the final form of the function
gives:

N

i—1

Ca(plap%"'apN) :C(p1)+z C(pz)Hp] (7)
=2 j=1
where C(p;) is defined in equation 6. Theoretically,
we could optimise this function analytically, and this
is possible if we wish to limit the size of the cascade.
However, in practice, large cascades, which are gener-
ally more efficient, contain too many variables in the
cost function to be amenable to analytic optimisation.
This then leaves us with a constrained numerical non-
linear optimisation problem. There are two types of
constraints on the problem. The first requires that 0 <
p; < 1since each p; is a relative frequency measure. In
practice, it is impossible to achieve a false positive rate
of 0 so it is useful to increase the value of the lower
bound to some suitably small number greater than 0.
That is, the first constraint becomes: I < p; < 1,
where we have used I = 0.05 as an achievable false
positive rate. There is one further complication with
these bounds. The exponential decay cost function (or
its logarithmic inverse) is quite inaccurate at modeling
the cost when there are very few features in an Ad-
aBoost classifier. In fact, for the training data we have
used, it requires at least 3 features to reduce the false
positive rate at all, at which point it typically reduces
the false positive rate by between 40 — 50%. Further, it
can require up to 6 features to reduce the false positive
rate significantly more than 50%. For this reason we
have set the false positive rate for the first cascade stage
t0 0.5 < p; < 0.6.

The second constraint is nonlinear, Hf;l pi < k,
where k is the target false positive rate of our whole
classifier. To find the optimal speed classifier, we need
to optimise over each of the p; and over NV, the number
of stages in the cascade. Note we could also fix the
required average speed of the classifier and optimise
for the false positive rate.

Since the minimisation in this case can be performed
offline, we have used an off the shelf minimisation rou-
tine. More specifically, we use the f mi ncon function

from the Matlab Optimization toolbox. Even so, the
optimisation is not straightforward since f m ncon is
a gradient descent based optimisation routine and is not
guaranteed to produce an optimal solution. Therefore
we perform several restarts to increase the chances of
finding the optimal solution.

We have found the optimum parameters with cascades
from 10 to 40 stages using both the exhaustive search
strategy and the optimisation search strategy and the
results are shown in Figure 5(a). The first thing to
note is that both curves appear to be asymptotically
approaching some minimum average cost, and
we would expect that adding more cascade layers
would improve the cost a little, but probably not
significantly. Secondly, the exhaustive search strategy
is approximately three times faster on average than
the optimisation search. A reasonable trade-off in our
opinion considering training times. Further we can still
maintain much of the learning speed advantages of the
optimisation search scheme by using the exhaustive
search for a few of the earlier cascade stages, and
then switching to the optimisation search for the less
important later stages - a kind of hybrid learning
scheme. We have not yet fully investigated this idea
however. Figure 5(b) shows the false positive rate
required at each stage of a cascade to achieve an
optimal cascade of the given size. The trend here is
very clear - most of the hard work should be left for
the stages very late in the cascade.

4 Preliminary Results and Conclu-
sion

Figure 6 shows the results of one of our classifiers on
two of the test images. Our current classifier has 23 cas-
cade stages and achieves a recognition rate of 0.71 with
a false positive rate of 2.9 x 10~* on the MIT/CMU
test set [5]. Our model predicts a recognition rate of
0.79 with a false positive rate of 1.6 x 10~* which is in
reasonable agreement with the empirical results. Our
scanner using our optimisation search runs at approx-
imately 4 frames (320 x 240) per second (fps) at 10
distinct scales on a 650MHz Pentium 11 laptop. This is
consistent with Viola and Jones [1] who report 15 fps
on an 700 MHz Pentium 11l - approximately 3 times
slower as predicted by our theoretical analysis.

In conclusion, we have presented two improvements
over Viola and Jones [1] original face detection
scheme. We have improved the training time of
the face detector by 300-fold, and have developed a
principled method for determining the optimal speed
cascade.

References

[1] Paul Viola and Michael Jones. Rapid object de-
tection using a boosted cascade of somple features.

350 T T

T T T
Exhaustive search classifier ——
00 b Optimisation search classifier ——x--

250 e -

200 e

150 —

100 L%

50 1 1 1 1 1
10 15 20 25 30 35 40

Number of Cascade Stages

Average Cost (mu s)

(a) Average cost of optimal cascades of different
sizes

n=10 ——

ns35 —-=--

False positive rate at each level

0 5 10 15 20 25 30 35 40
Cascade Level

(b) Required false positive reduction rates for the
optimal cascades (exhaustive search). The false
positive rates are achieved independently at each
stage of the cascade. That is, the overall false
positive rate is the product of the data points shown
in the figure.

Figure 5: Some results for different sized cascades.

In Computer Vision and Pattern Recognition, vol-
ume |, pages 511-518. IEEE Computer Society,
2001.

[2] Yoav Freund and Robert E. Schapire. Experiments
with a new boosting algorithm. In International
Conference on Machine Learning, pages 148-156,
1996.

[3] M.A. Duran and IL.E. Grossmann. An outer-
approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Pro-
gramming, 36:307-339, 1986.

[4] Omprakash K. Gupta and A. Ravindran. Branch
and bound experiments in convex nonlinear
integer programming. Management Science,
31(12):1533-1546, 1985.

[5] H. Rowley, S. Baluja, and T. Kanade. Neural
network-based face detection. |EEE Transactions
on Pattern Analysis and Machine Intelligence,
20:22-38, 1998.

Figure 6: Some example detections

