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Abstract 
This paper introduces a fast decision tree based feature classification system for hand gesture recognition and 
pose estimation.  Training of the decision trees is performed using synthetic data and classification is performed 
on images of real hands.  The presence of each finger is individually classified and gesture classification is 
performed by parts.  The attributes used for training and classification are simple ratios between the foreground 
and background pixels of the hand silhouette.  The system does not require the hand to be perfectly aligned to the 
camera or use any special markers or input gloves on the hand. 
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1 Introduction 
This work has focused on producing a gesture 
recognition and pose estimation system for Virtual 
and Augmented Reality [1] interfaces.  We have been 
working with the added constraints of unencumbered 
hands and minimal retraining or calibration between 
different users.  Many previous gesture based systems 
have the common element of markers on the hand [4, 
7], data gloves or coloured gloves worn by the user 
[6] to allow the gesture and pose to be derived.  A 
system capable of recognising of gesture and pose on 
unencumbered hands is more accessible to a casual 
user, only requiring a headset to allow them to 
interact with the environment. 
For many Augmented Reality (AR) systems gesture 
input is a suitable input mechanism.  Even a small set 
of gestures can allow a reasonable interaction since 
the user is interacting directly with a complex 
environment.  The most important requirement for a 
gesture interface is the need to function fast and 
smoothly.  A latency of greater than 1/10 of a second 
has an increased chance of causing motion sickness 
and it has been shown that high latencies reduce the 
users emotional attachment to the environment [8] 
and the accuracy of motor control tasks is impaired 
[13]. 
Gesture recognition systems using markers[4, 7] have 
the absolute position of some points, and possibly 
orientation of hand features, they are able to attempt 
to fit a model to the known information.  Methods that 
attempt recognition on unencumbered hands typically 
use appearance based attributes and machine learning 
techniques.  Features are extracted from the image 
and a classification system is trained, most often 
Decision trees[5, 6], Hidden Markov Models[9] or 
Neural networks[11].  To date, most of these 

appearance based systems have used gesture as an 
input or command issuing system, rather than 
attempting to interact with and manipulate objects[12] 
in an Augmented Environment directly with the hand. 
We use decision trees because they are able to 
perform classification quickly.  They are a good 
candidate for a gesture system [5, 6] if an acceptable 
classification accuracy can be achieved.  In an AR 
system with a limited set of gestures, gestures may be 
widely separated in the solution space to limit the 
interference between them at training time.   
Gesture may be supplemented by specific features, 
which can be tracked and positioned in space to 
provide additional orientation and pose [11, 12] such 
as finger separation.  Even at coarse level this is a 
richer interface than just gesture, e.g., the amount of 
gap between the thumb and finger in a pinch motion.  
This has been implemented using AR markers stuck 
to the hand in ARToolkit applications [4] and other 
research [7] allowing a user to pick up and rotate 
virtual objects that appear to be held by the hand.   
This system demonstrates gesture recognition by parts 
by detecting each of the fingers separately.  This 
finger detection is done in real time, identifying the 
presence or absence of each of the fingers in a image.  
It would be equally able to be used to detect the 
presence of a silhouette feature in another area of the 
image other than the fingers. 

2 Overview 
The system has separate training and real-time 
classification phases, shown in figure 1.  Training is 
performed on processed images from a large image 
database.  Real-time classification is performed on 
images of hands captured from cameras, processed 



 
Figure 1: The training and classification processes 

and passed to the decision trees generated by the 
training phase.  
A major problem with using machine learning 
techniques for gesture recognition and pose 
estimation is collecting enough training data to allow 
a robust estimation of the model.  We solve this in 
two ways.  First, the use of a synthetic hand [2, 6] 
with 23 degrees of freedom to generate a large data 
set. Second, we use only the silhouettes of the hands 
for recognition purposes.  This avoids the problem of 
complex lighting effects which are present in real 
images but usually missing in synthetic images. 

2.1 Image generation 
The system used 2280 synthetic hand images.  This 
allowed a large and well defined dataset to be 
produced for training the trees.  Datasets were 
produced by a ray tracer at a rate of about 750 images 
per hour.  Each finger was moved through its range 
adduction/abduction of the MCP joint, the side to side 
motion in the plane of the palm.  When the fingers 
overlapped the positions were altered to make the 
fingers parallel and the finger tips where never 
occluded in the training set.  Since each gesture was 
specified algorithmically the ground truth about each 
pose was easily extracted. 

     
Figure 2: Two images from the synthetic dataset. 

The hand was positioned parallel to the camera, filling 
most of the frame, in the ideal classification position.  
This ensured that the maximum number of pixels 
were available before normalisation of the training 
data.  

2.2 Image segmentation 
Image segmentation of the hand is not addressed in 
this project.  The training images are produced by the 
ray tracer as a silhouette.  The real hand test images 
have been photographed against a black background 

and thresholded to 1 bit images.  Any clean up of the 
test images required by noise or foreign objects at the 
edge of the test photograph have been done manually. 
The live system has a black covered workspace and a 
pair of black sporting wrist bands are used to produce 
an easily segmented disembodied hand for further 
processing.  The hand itself remains unencumbered.  
Any arm observed which is not part of the hand blob 
is considered on the other side of the wrist band and 
ignored.  Thresholding is performed to convert this to 
a 1 bit image for input to the classification system. 

2.3 Image normalisation 
After being generated by the ray tracer or captured 
and thresholded from the camera the images were 
clipped to the extents of the hand silhouette and then 
normalised to a unit square image.  The normalisation 
of an input image has been used in other gesture and 
pose estimation systems[5, 9] to convert the input 
image into a template approximating the shape of the 
hand.  If the original image is small the normalised 
image cannot contain any more information than the 
original, as shown in figure 3.  This system used a 
256x256 pixel normalised image to guarantee all 
possible information could be extract from the 
320x240 input images. 

a)     b)  
Figure 3: a) An optimal image.  b) A small image scaled 
up from a small source to produce a unit image. 
This process allows the system to handle hands 
presented at an angle to the image plane of the 
camera.  Once normalised, images present an image 
close enough to the trained data to allow 
classification.   
Figure 4 shows the normalised images of the hand 
taken parallel to the image plane and at a rotation of 
30 degrees off parallel through both the vertical and 
horizontal axis of the plane of the hand.  The shape 
variation is no larger than the difference between 



hands of different users in the finger region but larger 
in the area of the back of the hand and base of the 
thumb.  

a)  b)     

c)  
Figure 4: a) A hand parallel to the image plane.  b) 
A hand with vertical axis rotation.  c) A hand with 
horizontal axis rotations, all images normalised. 

2.4 Image subdivision 
Each image is divided into several sub-images in 
addition to using the full image.  The sub-images are 
created by dividing the full image into regions of half 
and a third of the height and width of the normalised 
image.  Additional sub-images overlapping the 
primary sub-images are also generated.  Rectangular 
sub-images, 2/3 and 3/5 of the height of the image, at 
layers 1 and 2 respectively are also generated.   
At each layer n, n>=0, the number of square images 
generated is (2n+1)2 and the number of rectangular 
images is 2n(2n+1).  We used 2 layers of sub images, 
therefore from equation (1) where l=2, we have 56 
images, 35 square and 21 rectangular. 
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Figure 5 shows the square (S1-S9) and top half of the 
rectangular (R1-3) sub-images for layer 1.  Figure 6 
shows the non overlapping square sub-images of layer 
2. 

 

 
Figure 5: Layer 1 sub-images. 

 
Figure 6: Layer 2 sub-images. 

2.5 Image Attributes 
For both the synthetic training images and the real 
images a fast numerical analysis is performed on each 
of the sub divided zone of the image. The images 
produced for layers 0-2 generate a 224 element 
dataset by generating 4 values for each area.  The four 
values calculated are, 

• Centre of mass of the foreground area in the 
X axis, scaled 0.0 to 1.0 

• Centre of mass of the foreground area in the 
Y axis, scaled 0.0 to 1.0 

• Ratio of foreground pixel to the total number 
of pixels in the area, range 0.0 to 1.0 

• Ratio of edge pixels in the foreground of the 
sub-image to the length of the edges of the 
area, no scaling. 

The values for centre of mass give a measure of the 
position of the hand in the image.  The foreground 
pixel ratio is the primary measure of the presence of a 
feature in an area of the image.  The edge ratio is able 
to distinguish between two fingers in contact and 
slightly separated.  The length of edges will increase 
while centre of mass and foreground pixel ratio will 
remain relatively constant. 
The overlapping image subdivision lowers the 
instability the decision tree would have around a split 
point.  A feature moving primarily from one area to 
another is represented in the area overlapping both 
areas, allowing the tree to represent the transition on 
two branches.  e.g. In figure 4 a feature moving from 
being present primarily in square sub-image S1 to S2 
will be present in sub-image S5 throughout the 
transition. This may contribute to larger trees, but 
lower errors should result from fewer sudden switches 
in decision state of the tree. 

2.6 Classification using C4.5 Decision 
trees 

The decision tree implementation used was the J48 
class of C4.5 decision trees provided in the Weka 
machine learning environment [14, 15]. 
One classifier was trained for each finger and the 
thumb.  The classifier returns true or false to indicate 
the presence or absence of a finger in the image. 
Each classifier is constructed by bagging seven C4.5 
trees.  The seven trees were generated from the 



synthetic data set.  Sequential, non random sections of 
the dataset were used to generate the trees.  The parts 
of the dataset used were, the full data set (one tree), 
each half of the data (two trees), and each quarter of 
the data set (four trees).  This split was chosen 
because of the distribution of the dataset.  The 
position of the fingers ranges from maximum 
adduction at the start, rotation in the plane of the palm 
away from the thumb, to full abduction at the end of 
the dataset, rotation towards to thumb.  This 
distribution results in the mass of the fingers tending 
from left to right in the training images, the sequential 
division of the training set may be able to use local 
attribute distribution that are not present globally.   
The trees in each classifier were initially constructed 
using the default Weka parameters.  Classifier 
performance varied between 68% and 84%.  It was 
observed that changes to the tree parameters had 
significant effect on performance.  For each of the 
five classifiers the effect on performance from 
changing tree parameters was sampled.  The optimal 
parameters for the trees of each classifier were 
selected.  A variation of 40% was observed between 
the best and worst parameter selection for each 
classifier.  The parameters changed were, the 
minimum number of items per leaf, confidence factor 
for the J48 tree pruning algorithm, number of folds 
used for cross-validation, and the number of votes 
required for a true to be returned.  Bagging is 
normally implemented requiring a simple majority of 
votes required, our parameter search showed this did 
not always generate the optimal performance on our 
test set.  Using the optimal parameters a finger 
classifier is returns true for an input image I, when the 
sum of true votes from the seven decision trees equals 
or exceeds the vote threshold for that classifier, δf (2). 
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The optimal parameters for each of the seven trees in 
a classifier were not individually searched.  The 
performance variation observed by varying tree 
parameters for all seven trees uniformly suggests that 
it is unlikely to be optimal for all seven trees.  A 
search of each of the seven solution spaces for the 
five classifiers has not been performed.  This could be 
expected to improve the classification performance of 
the system. 

3 Results 
The test dataset contains 190 images in 8 datasets 
from 6 different people.  Where multiple datasets 
have been used from the same individual they have 
been sourced at different times and accordingly 
contain some variability in pose and orientation of the 
camera.  
 

 Correct False  False  
 (%) Positive(%) Negative(%) 
 
Thumb 98.2 0.00 1.8 
First 87.5 12.5 0.0 
Index 94.6 5.4 0.0 
Ring 87.5 8.9 3.6 
Pinky 92.7 5.5 1.8 

Table 1. The results of classification on the test images. 
These results can be achieved at speeds that allow the 
technique to be used for real time gesture input.  
Training is able to be performed quickly and can be 
absorbed as part of the startup time. Once training is 
complete the evaluation of 5 classifiers at each frame 
runs faster than the frame rate (30fps) of the camera 
system without significant CPU loading (~20%).  The 
system used was a Pentium 4 2.8Ghz. 
The use of decision trees allows us to inspect the 
cases that produce incorrect results.  This may enable 
us to use other sub-image areas or validation system 
to identify problem gesture.  An example is the error 
from the classification of the first finger, adjacent to 
the thumb, which could be observed to be using the 
presence of silhouette in the area at the top of the 
image, where the finger tip would be when the finger 
was extended.  When a user has a several finger bent 
the normalised image, as shown in figure 7, still has 
the ‘tip’ of the finger in the same location.  This 
indicates a deficiency in the training data.   

     Figure 7: This is incorrectly classified as a positive 
first finger because the normalised image(right) still 
has the end of the first finger in a reasonable position 
for a true classification. 

4 Future work 
The next stage of development is incorporating the 
current method into a simple AR environment.  A 
system using a simple gesture set of pinching, pulling 
and pushing objects with unencumbered hands will be 
implemented to provide a test bed allowing further 
developments to be tested in their target system and 
investigate the positioning of additional cameras to 
observe the workspace and the accuracy of gesture 
pose and position estimation. 
Other training datasets will also be looked 
investigated, larger datasets with adjacent pairs of 
absent fingers and the 32 images created from binary 
counting with the fingers will be explored. 



The limit of hand rotation at which image 
normalisation is no longer able to produce a 
reasonable hand image causing performance to be 
degraded is to be investigated.  This measure will 
allow the user to be aware of the range of motion 
through which the system should be able track their 
gestures.  Requiring a degree of user goodwill with 
respect to not intentionally confusing the system will 
be a constraint of the initial system. 

5 Conclusion 
We have demonstrated a decision tree classification 
system trained on synthetic data able to classify 
images of real hands.  The detection of fingers with 
decision trees provides a fast classification system 
suitable for hand gesture and pose input for real time 
systems.  The system is able to detect the presence or 
absence of each of the fingers in a hand image.  This 
may be used as either primary information, combined 
as identifiers for gestures, or to provide hints to a 
model based hand pose estimation system if high 
accuracy joint angles are needed. 
Training the trees with synthetic data sets, performing 
normalisation of training images and evaluating 
overlapping regions of the normalised images gives 
smooth classification performance throughout the 
angle of motion for each finger and moderate 
rotations of the hand relative to the camera plane. 
Training time is a few seconds for each tree, making it 
acceptable to train at start up.  This allows different 
datasets to be loaded at start-up.  Once training is 
complete the evaluation of 5 classifiers at each frame 
runs at 30fps without significant CPU loading. 
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