
Finger Detection with Decision Trees
J. Mackie and B. McCane

University of Otago, Dept. of Computer Science.
{jayson, mccane}@cs.otago.ac.nz

Abstract
This paper introduces a fast decision tree based feature classification system for hand gesture recognition and
pose estimation. Training of the decision trees is performed using synthetic data and classification is performed
on images of real hands. The presence of each finger is individually classified and gesture classification is
performed by parts. The attributes used for training and classification are simple ratios between the foreground
and background pixels of the hand silhouette. The system does not require the hand to be perfectly aligned to the
camera or use any special markers or input gloves on the hand.
Keywords : Decision trees, Gesture recognition, Synthetic training sets, Augmented reality

1 Introduction
This work has focused on producing a gesture
recognition and pose estimation system for Virtual
and Augmented Reality [1] interfaces. We have been
working with the added constraints of unencumbered
hands and minimal retraining or calibration between
different users. Many previous gesture based systems
have the common element of markers on the hand [4,
7], data gloves or coloured gloves worn by the user
[6] to allow the gesture and pose to be derived. A
system capable of recognising of gesture and pose on
unencumbered hands is more accessible to a casual
user, only requiring a headset to allow them to
interact with the environment.
For many Augmented Reality (AR) systems gesture
input is a suitable input mechanism. Even a small set
of gestures can allow a reasonable interaction since
the user is interacting directly with a complex
environment. The most important requirement for a
gesture interface is the need to function fast and
smoothly. A latency of greater than 1/10 of a second
has an increased chance of causing motion sickness
and it has been shown that high latencies reduce the
users emotional attachment to the environment [8]
and the accuracy of motor control tasks is impaired
[13].
Gesture recognition systems using markers[4, 7] have
the absolute position of some points, and possibly
orientation of hand features, they are able to attempt
to fit a model to the known information. Methods that
attempt recognition on unencumbered hands typically
use appearance based attributes and machine learning
techniques. Features are extracted from the image
and a classification system is trained, most often
Decision trees[5, 6], Hidden Markov Models[9] or
Neural networks[11]. To date, most of these

appearance based systems have used gesture as an
input or command issuing system, rather than
attempting to interact with and manipulate objects[12]
in an Augmented Environment directly with the hand.
We use decision trees because they are able to
perform classification quickly. They are a good
candidate for a gesture system [5, 6] if an acceptable
classification accuracy can be achieved. In an AR
system with a limited set of gestures, gestures may be
widely separated in the solution space to limit the
interference between them at training time.
Gesture may be supplemented by specific features,
which can be tracked and positioned in space to
provide additional orientation and pose [11, 12] such
as finger separation. Even at coarse level this is a
richer interface than just gesture, e.g., the amount of
gap between the thumb and finger in a pinch motion.
This has been implemented using AR markers stuck
to the hand in ARToolkit applications [4] and other
research [7] allowing a user to pick up and rotate
virtual objects that appear to be held by the hand.
This system demonstrates gesture recognition by parts
by detecting each of the fingers separately. This
finger detection is done in real time, identifying the
presence or absence of each of the fingers in a image.
It would be equally able to be used to detect the
presence of a silhouette feature in another area of the
image other than the fingers.

2 Overview
The system has separate training and real-time
classification phases, shown in figure 1. Training is
performed on processed images from a large image
database. Real-time classification is performed on
images of hands captured from cameras, processed

Figure 1: The training and classification processes

and passed to the decision trees generated by the
training phase.
A major problem with using machine learning
techniques for gesture recognition and pose
estimation is collecting enough training data to allow
a robust estimation of the model. We solve this in
two ways. First, the use of a synthetic hand [2, 6]
with 23 degrees of freedom to generate a large data
set. Second, we use only the silhouettes of the hands
for recognition purposes. This avoids the problem of
complex lighting effects which are present in real
images but usually missing in synthetic images.

2.1 Image generation
The system used 2280 synthetic hand images. This
allowed a large and well defined dataset to be
produced for training the trees. Datasets were
produced by a ray tracer at a rate of about 750 images
per hour. Each finger was moved through its range
adduction/abduction of the MCP joint, the side to side
motion in the plane of the palm. When the fingers
overlapped the positions were altered to make the
fingers parallel and the finger tips where never
occluded in the training set. Since each gesture was
specified algorithmically the ground truth about each
pose was easily extracted.

Figure 2: Two images from the synthetic dataset.

The hand was positioned parallel to the camera, filling
most of the frame, in the ideal classification position.
This ensured that the maximum number of pixels
were available before normalisation of the training
data.

2.2 Image segmentation
Image segmentation of the hand is not addressed in
this project. The training images are produced by the
ray tracer as a silhouette. The real hand test images
have been photographed against a black background

and thresholded to 1 bit images. Any clean up of the
test images required by noise or foreign objects at the
edge of the test photograph have been done manually.
The live system has a black covered workspace and a
pair of black sporting wrist bands are used to produce
an easily segmented disembodied hand for further
processing. The hand itself remains unencumbered.
Any arm observed which is not part of the hand blob
is considered on the other side of the wrist band and
ignored. Thresholding is performed to convert this to
a 1 bit image for input to the classification system.

2.3 Image normalisation
After being generated by the ray tracer or captured
and thresholded from the camera the images were
clipped to the extents of the hand silhouette and then
normalised to a unit square image. The normalisation
of an input image has been used in other gesture and
pose estimation systems[5, 9] to convert the input
image into a template approximating the shape of the
hand. If the original image is small the normalised
image cannot contain any more information than the
original, as shown in figure 3. This system used a
256x256 pixel normalised image to guarantee all
possible information could be extract from the
320x240 input images.

a) b)
Figure 3: a) An optimal image. b) A small image scaled
up from a small source to produce a unit image.
This process allows the system to handle hands
presented at an angle to the image plane of the
camera. Once normalised, images present an image
close enough to the trained data to allow
classification.
Figure 4 shows the normalised images of the hand
taken parallel to the image plane and at a rotation of
30 degrees off parallel through both the vertical and
horizontal axis of the plane of the hand. The shape
variation is no larger than the difference between

hands of different users in the finger region but larger
in the area of the back of the hand and base of the
thumb.

a) b)

c)
Figure 4: a) A hand parallel to the image plane. b)
A hand with vertical axis rotation. c) A hand with
horizontal axis rotations, all images normalised.

2.4 Image subdivision
Each image is divided into several sub-images in
addition to using the full image. The sub-images are
created by dividing the full image into regions of half
and a third of the height and width of the normalised
image. Additional sub-images overlapping the
primary sub-images are also generated. Rectangular
sub-images, 2/3 and 3/5 of the height of the image, at
layers 1 and 2 respectively are also generated.
At each layer n, n>=0, the number of square images
generated is (2n+1)2 and the number of rectangular
images is 2n(2n+1). We used 2 layers of sub images,
therefore from equation (1) where l=2, we have 56
images, 35 square and 21 rectangular.

∑
=

+++=
l

n
nnn

0

2)12(2)12(images Total (1)

Figure 5 shows the square (S1-S9) and top half of the
rectangular (R1-3) sub-images for layer 1. Figure 6
shows the non overlapping square sub-images of layer
2.

Figure 5: Layer 1 sub-images.

Figure 6: Layer 2 sub-images.

2.5 Image Attributes
For both the synthetic training images and the real
images a fast numerical analysis is performed on each
of the sub divided zone of the image. The images
produced for layers 0-2 generate a 224 element
dataset by generating 4 values for each area. The four
values calculated are,

• Centre of mass of the foreground area in the
X axis, scaled 0.0 to 1.0

• Centre of mass of the foreground area in the
Y axis, scaled 0.0 to 1.0

• Ratio of foreground pixel to the total number
of pixels in the area, range 0.0 to 1.0

• Ratio of edge pixels in the foreground of the
sub-image to the length of the edges of the
area, no scaling.

The values for centre of mass give a measure of the
position of the hand in the image. The foreground
pixel ratio is the primary measure of the presence of a
feature in an area of the image. The edge ratio is able
to distinguish between two fingers in contact and
slightly separated. The length of edges will increase
while centre of mass and foreground pixel ratio will
remain relatively constant.
The overlapping image subdivision lowers the
instability the decision tree would have around a split
point. A feature moving primarily from one area to
another is represented in the area overlapping both
areas, allowing the tree to represent the transition on
two branches. e.g. In figure 4 a feature moving from
being present primarily in square sub-image S1 to S2
will be present in sub-image S5 throughout the
transition. This may contribute to larger trees, but
lower errors should result from fewer sudden switches
in decision state of the tree.

2.6 Classification using C4.5 Decision
trees

The decision tree implementation used was the J48
class of C4.5 decision trees provided in the Weka
machine learning environment [14, 15].
One classifier was trained for each finger and the
thumb. The classifier returns true or false to indicate
the presence or absence of a finger in the image.
Each classifier is constructed by bagging seven C4.5
trees. The seven trees were generated from the

synthetic data set. Sequential, non random sections of
the dataset were used to generate the trees. The parts
of the dataset used were, the full data set (one tree),
each half of the data (two trees), and each quarter of
the data set (four trees). This split was chosen
because of the distribution of the dataset. The
position of the fingers ranges from maximum
adduction at the start, rotation in the plane of the palm
away from the thumb, to full abduction at the end of
the dataset, rotation towards to thumb. This
distribution results in the mass of the fingers tending
from left to right in the training images, the sequential
division of the training set may be able to use local
attribute distribution that are not present globally.
The trees in each classifier were initially constructed
using the default Weka parameters. Classifier
performance varied between 68% and 84%. It was
observed that changes to the tree parameters had
significant effect on performance. For each of the
five classifiers the effect on performance from
changing tree parameters was sampled. The optimal
parameters for the trees of each classifier were
selected. A variation of 40% was observed between
the best and worst parameter selection for each
classifier. The parameters changed were, the
minimum number of items per leaf, confidence factor
for the J48 tree pruning algorithm, number of folds
used for cross-validation, and the number of votes
required for a true to be returned. Bagging is
normally implemented requiring a simple majority of
votes required, our parameter search showed this did
not always generate the optimal performance on our
test set. Using the optimal parameters a finger
classifier is returns true for an input image I, when the
sum of true votes from the seven decision trees equals
or exceeds the vote threshold for that classifier, δf (2).

 f
n

Inf TIC δ≥≡∑
=

6

0
)()((2)

The optimal parameters for each of the seven trees in
a classifier were not individually searched. The
performance variation observed by varying tree
parameters for all seven trees uniformly suggests that
it is unlikely to be optimal for all seven trees. A
search of each of the seven solution spaces for the
five classifiers has not been performed. This could be
expected to improve the classification performance of
the system.

3 Results
The test dataset contains 190 images in 8 datasets
from 6 different people. Where multiple datasets
have been used from the same individual they have
been sourced at different times and accordingly
contain some variability in pose and orientation of the
camera.

 Correct False False
 (%) Positive(%) Negative(%)

Thumb 98.2 0.00 1.8
First 87.5 12.5 0.0
Index 94.6 5.4 0.0
Ring 87.5 8.9 3.6
Pinky 92.7 5.5 1.8

Table 1. The results of classification on the test images.
These results can be achieved at speeds that allow the
technique to be used for real time gesture input.
Training is able to be performed quickly and can be
absorbed as part of the startup time. Once training is
complete the evaluation of 5 classifiers at each frame
runs faster than the frame rate (30fps) of the camera
system without significant CPU loading (~20%). The
system used was a Pentium 4 2.8Ghz.
The use of decision trees allows us to inspect the
cases that produce incorrect results. This may enable
us to use other sub-image areas or validation system
to identify problem gesture. An example is the error
from the classification of the first finger, adjacent to
the thumb, which could be observed to be using the
presence of silhouette in the area at the top of the
image, where the finger tip would be when the finger
was extended. When a user has a several finger bent
the normalised image, as shown in figure 7, still has
the ‘tip’ of the finger in the same location. This
indicates a deficiency in the training data.

 Figure 7: This is incorrectly classified as a positive
first finger because the normalised image(right) still
has the end of the first finger in a reasonable position
for a true classification.

4 Future work
The next stage of development is incorporating the
current method into a simple AR environment. A
system using a simple gesture set of pinching, pulling
and pushing objects with unencumbered hands will be
implemented to provide a test bed allowing further
developments to be tested in their target system and
investigate the positioning of additional cameras to
observe the workspace and the accuracy of gesture
pose and position estimation.
Other training datasets will also be looked
investigated, larger datasets with adjacent pairs of
absent fingers and the 32 images created from binary
counting with the fingers will be explored.

The limit of hand rotation at which image
normalisation is no longer able to produce a
reasonable hand image causing performance to be
degraded is to be investigated. This measure will
allow the user to be aware of the range of motion
through which the system should be able track their
gestures. Requiring a degree of user goodwill with
respect to not intentionally confusing the system will
be a constraint of the initial system.

5 Conclusion
We have demonstrated a decision tree classification
system trained on synthetic data able to classify
images of real hands. The detection of fingers with
decision trees provides a fast classification system
suitable for hand gesture and pose input for real time
systems. The system is able to detect the presence or
absence of each of the fingers in a hand image. This
may be used as either primary information, combined
as identifiers for gestures, or to provide hints to a
model based hand pose estimation system if high
accuracy joint angles are needed.
Training the trees with synthetic data sets, performing
normalisation of training images and evaluating
overlapping regions of the normalised images gives
smooth classification performance throughout the
angle of motion for each finger and moderate
rotations of the hand relative to the camera plane.
Training time is a few seconds for each tree, making it
acceptable to train at start up. This allows different
datasets to be loaded at start-up. Once training is
complete the evaluation of 5 classifiers at each frame
runs at 30fps without significant CPU loading.

6 References
[1] ARToolkit.

http://www.hitl.washington.edu/artoolkit/
(August 2004)

[2] A. Athitsos, S. Sclaroff: An Appearance-
Based Framework for 3D Hand Shape
Classification and Camera Viewpoint
Estimation, In Proc. Fifth IEEE
International Conf. on Automatic Face and
Gesture Recognition, 2002, Washington
D.C.

[3] L. Breiman: Bagging predictors, Machine
Learning, 24:123-140, 1996.

[4] V. Buchmann, S. Violich, M. Billinghurst,
A. Cockburn: FingARtips: gesture based
direct manipulation in Augmented Reality.
In Proc. of the 2nd international conf. on
Computer graphics and interactive
techniques in Australasia and South East
Asia (Graphite 2004). 15-18th June,
Singapore, 2004, ACM Press, New York,
New York, pp. 212-221.

[5] S. Gutta, J. Huang, I. Imam, H. Wechsler:
Face and Hand Recognition Using Hybrid
Classifiers, In Proc. 2nd International Conf.
on Automated Face and Hand Gesture
Recognition (ICAFGR'96), 1996.

[6] Y. Iwai, K. Watanabe, Y. Yagi, M. Yachida:
Gesture Recognition by Using Colored
Gloves, IEEE International Conference on
Systems, Man and Cybernetics (SMC'96),
Vol. 1, pp. 76-81, Beijing, China, Aug. 1996.

[7] Y. Kojima, Y. Yasumuro, H. Sasaki, I.
Kanaya, O. Oshiro, T. Kuroda, Y. Manabe
and K. Chihara: Hand Manipulation of
Virtual Object in Wearable Augmented
Reality, In Proc. 7th International Conf. on
Virtual Systems and Multimedia (VSMM’01),
pp 463-470, October 2001

[8] M. Meehan, S. Razzaque, M. Whitton and F.
Brooks Jr.: Effect of Latency on Presence in
Stressful Virtual Environments, In
Proc.2003 IEEE Virtual Reality Conf.
(IEEE VR2003), pp 133-140, March 2003

[9] K. Oka, Y. Sato, and H. Koike: Real-time
Tracking of Multiple Fingertips and Gesture
Recognition for Augmented Desk Interface
Systems, In Proc. 2002 IEEE International
Conf. on Automatic Face and Gesture
Recognition (FG 2002), pp. 429-434, May
2002.

[10] J. R. Quinlan: Bagging, Boosting and C4.5,
In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pp.
725-730. Menlo Park, CA: AAAI Press,
1996.

[11] Y. Sato, M. Saito, and H. Koike: Real-time
input of 3D pose and gestures of a user's
hand and its applications for HCI, In Proc.
2001 IEEE Virtual Reality Conf. (IEEE
VR2001), pp. 79-86, March 2001

[12] J. Segen and S. Kumar: Shadow Gestures:
3D Hand Pose Estimation using a Single
Camera, In Proc. IEEE International Conf.
on Computer Vision and Pattern Recognition
(CVPR), Fort Collins, June 1999.

[13] B. Watson, N. Walker, P. Woytiuk and W.
Ribarsky: Maintaining Usability During 3D
Placement despite Delay, In Proc.2003
IEEE Virtual Reality Conf. (IEEE VR2003),
pp 133-140, March 2003

[14] Weka Machine learning project homepage,
http://www.cs.waikato.ac.nz/~ml/ (August
2004)

[15] I. Witten, E. Frank: Data Mining: Practical
Machine Learning Tools and Techniques
with Java Implementations, Morgan
Kaufmann, October 1999.

