
Ray Tracing Arbitrary Objects on the GPU
Andrew Wood, Brendan McCane, and Scott A. King

University of Otago, Department of Computer Science.
{awood,mccane,sking}@cs.otago.ac.nz

Abstract
Adapting ray tracing algorithms to programmable graphics hardware has gained momentum recently by
using the parallelism of the GPU to reduce the work done on the CPU. GPU methods for ray tracing
scenes consisting of only triangles have since been proposed. In this paper, we present a general method
for ray tracing objects other than triangles on the GPU. Using more advanced primitives allows for faster
and better results by reducing the number of intersection tests, as well as providing a more accurate
representation of the surface. Realistic images can then be produced containing complex shapes without
being limited to a model completely made up of triangles.

Keywords: Programmable Graphics Hardware, Ray Tracing, Quadric Objects

1 Introduction

It has become popular to use the Graphics Process-
ing Unit (GPU) to improve performance in current
applications, primarily to reduce the work need-
ing to be done on the CPU. Current research in
implementing ray tracing algorithms on the GPU
has been limited to scenes composed completely
of triangles. The method for ray tracing triangles
first presented in [1] runs almost entirely on the
GPU, using a limited form of recursion to good
effect in processing secondary rays. In [2], the GPU
is used to accelerate only the ray-triangle inter-
sections, with all runtime decisions made on the
CPU. Problems with using only triangles include
the need to increase the number of triangles the
closer you get to the object in order to maintain a
high level of detail. Using triangles to approximate
curved surfaces also introduces artifacts, with a
hard edge visible between two adjacent triangles.
We present a method to ray trace objects other
than triangles on the GPU. This reduces the num-
ber of objects in space subdivison structures, fur-
ther simplifying processing of the scene. Quadric
primitives are used here as an example, with ex-
tension possible to other surfaces.

In section 2, we briefly outline the capabilities of
programmable GPUs. Section 3 looks at previous
work in adapting ray tracing algorithms to the
GPU. Sections 4 and 5 contain description and
implementation details of our ray tracing and
object intersection methods. Section 6 outlines
possible improvements to the method, as well as
directions for future research.

2 Programmable Graphics Hardware

Developments in graphics card technology in the
last few years have added programmable function-
ality. On these new graphics cards, programs can
now be run as part of the graphics pipeline [3]. Pro-
grams can be included at both the vertex and the
fragment processing stages, allowing computation
once per vertex and once per output pixel during
each rendering pass (figure 1). These programs run
as part of the pipeline, and so still take advantage
of the functionality of the graphics API. These
programs, also known as shaders, can be written
in Cg, a c-like language supported in both DirectX
and OpenGL, allowing it to be used in different
environments [4].

Figure 1: Graphics card programming model



3 Triangle Ray Tracing

The method for ray tracing triangles described in
[5] uses a stream programming model, with a series
of kernels that do the computation, connected by
streams of information (figure 2). This is mapped
to the graphics hardware using fragment shading
programs as the kernels. Only one shading pro-
gram can be executed on the card during each ren-
dering pass. This algorithm must then use multiple
rendering passes, using the rendered output of the
current shading program as input to the next.
Using this method, a ray tracer can be built us-
ing the CPU to decide when to change from one
operation to the next. The current fragment pro-
gram is run once per fragment in each rendering
pass, with multiple fragment processors running
the same program in parallel on different fragments
to compute the result. For example, GeForce FX
series graphics cards have 12 parallel fragment pro-
cessors. This method has similar performance to
a software implementation, with most of the ray
tracing work no longer being done on the CPU.
This can give rise to more closely integrated appli-
cations, allowing the CPU to be either sharing the
processing, or preparing scene information for the
next frame while the current one is being rendered.

Figure 2 outlines the algorithm used to implement
this method. Each step in this flow diagram repre-
sents a fragment shading program executed as part
of a rendering pass. Each rendering pass involves
setting a fragment shader as active and rendering
a screen-filling quad. This allows the shader to
be executed for each pixel on the screen, and the
output to be saved to a texture. The texture repre-
sents the stream between two steps, which is then
bound as input to the next step.
Generating the eye rays can be done in a single
pass. Given the camera parameters, the rays are
generated for each pixel and the output saved in a
texture. In this method the entire triangle mesh is
encoded in a uniform grid acceleration structure,
all stored in texture memory on the graphics card.
Traversing the acceleration structure involves mul-
tiple rendering passes. In each pass each eye ray is
extended through the grid one voxel until it reaches
a non-empty voxel.
Fragment programs can modify the value stored in
the depth buffer, which can be used to keep track
of the state of each pixel. Pixels can then be in
either the ‘traversal’ or ‘intersection’ states, and
a depth test can limit a rendering pass to only
process those fragments in a given state. This
reduces the work required in that rendering pass,
and also makes it possible to count the number
of fragments in that state. An occlusion query
returns the number of fragments that were pro-

cessed in the previous rendering pass. This allows
looping to be controlled from the CPU, by running
repeated rendering passes until there are no more
fragments with that state in the depth buffer.
The eye rays are extended through the uniform
grid until they all either reach a non-empty voxel,
or pass out of the volume and require no further
processing. The intersection routine is a similar
process, looping over the triangles in the voxel until
the closest intersection is found or the ray passes
through the voxel and is returned to the traversal
state. Switching between traversal and intersection
states affects performance if not managed carefully.
When all rays are either found to intersect a tri-
angle or pass out of the scene, a rendering pass is
initiated that shades these hitpoints and generates
secondary rays if required. The recursive step in
this method is limited to a single path, meaning
that only one shadow, reflective or transmissive
ray can be generated at each ray depth. The final
result is then combined in the framebuffer and out-
put to the screen after all processing is complete.

Figure 2: Streaming ray tracing model [5]

Another method that closely integrates processing
between the CPU and the graphics hardware is
the Ray Engine, proposed in [2]. This method
uses the GPU to accelerate only the ray-triangle
intersection tests. Ray tracers spend most of their
time performing intersection tests, which proves to
be the major bottleneck in the rendering process.
Here the CPU runs the ray tracer, generating ray-
triangle intersection tests as required. These tests
are cached to make the best use of the GPU’s
parallel processing power. The CPU and GPU
are very closely integrated, such that if the CPU
finds that the GPU is still busy, it will calculate
some of the intersection tests instead. Since only
the ray-triangle intersection tests are performed
on the GPU, the CPU can more easily maintain



acceleration structures, such as an octree - without
having to try and implement this same structure
on the GPU.

We also use the stream programming model in our
more general ray tracing framework. This struc-
ture makes it easier to see the logical connection
between different steps, which is then implemented
using multiple rendering passes and textures as
storage. The GPU is used primarily to speed up
the intersection tests and compile the final output
image.

4 Ray Tracing Framework

Backward ray tracers operate by casting rays from
the eye through each pixel on the screen, to dis-
cover what the eye would see in the scene. This is
a process that easily maps to graphics hardware de-
signed to run the same fragment shading program
once for every pixel in the window currently being
rendered. Ray casting is the process of tracing only
the primary rays through the scene, shading on the
closest hit. This is not a full ray tracing model with
secondary shadowing, reflection, or refraction rays.
The framework shown in figure 3 outlines our ray
casting method, using a CPU driven approach to
allow for optimisation algorithms to be included.
Each of the kernels is implemented by a fragment
program running on the GPU, one per rendering
pass.

Figure 3: Ray tracing framework

The CPU runs a loop or traversal of the current
scene, running an object intersection routine for
each object with all initial eye rays. Any resulting
intersections are stored in an intersection depth
buffer updated in each intersection pass, retain-
ing only the closest intersection point. When all
objects have been processed, the shading routine
is used to colour each pixel using the stored in-
tersection point, lighting information and material
properties.

Since the type of object is known on the CPU,
the correct object intersection routine can then be
chosen. This means that an object intersection
shader can be built for each different type of object,
rather than trying to produce a shader that can
intersect all possible objects. These intersection
routines are then kept quite short and, more im-
portantly, fast, while being easy to swap in and out
as the current intersection method. This allows
a range of objects to be included in ray-traced
scenes, encoding the ray-intersection routine as a
fragment shader. Section 5 outlines the method
for intersecting rays with the full range of quadric
primitives.

The CPU can initiate this object shading process
and continue processing any change in scene infor-
mation for the next frame. This provides good re-
sults for single frame rendering, while being practi-
cal for the production of animation. The CPU and
GPU are now working together more closely, reduc-
ing CPU workload and increasing performance.

Because object rendering is initiated on the CPU,
it is possible to include a host of optimisation algo-
rithms. It is also possible to store all the objects in
either a heirarchical tree or even a grid acceleration
structure. Here the simplest intersection method
is used; each object is intersected with all of the
rays cast into the scene.

4.1 Intersection Kernel

An intersection shader is built for each type
of object in the scene. An example of how to
construct such an intersection shader is given in
figure 4.
The input definitions allow textures (lines 2-3)
and variables to be made available (lines 4-5).
Lines 7 and 16 list the lookups to these textures,
using texture coordinates for the current screen
pixel. The ray position and direction are then
transformed to object space (lines 14-15). The
intersection test function call on line 20 uses a
function that would be defined specific to the type
of object. The hitpoint and normal for the closest
intersection are calculated and left in the ‘hp1’
and ‘normal1’ variables. Also output is a boolean
value indicating whether or not this intersection
test was a ‘miss’. The new intersection point will
only be output if there was a valid intersection,
and the new intersection point is closer than any
value currently stored in the intersection texture
(line 25).
The output on a successful intersection test will
overwrite any value currently being stored, if it is
the closest hitpoint. The intersection depth buffer
has to be maintained by the intersection shader
on the GPU since there is more information



1 float4 main(float2 texcoords : TEXCOORD0,
2 uniform samplerRECT eyeray : TEXUNIT0,
3 uniform samplerRECT intersection : TEXUNIT1,
4 uniform float4x4 AFT,
5 uniform float object_id) : COLOR {
6 float3 hp1,normal1; bool miss;
7 float4 temp = texRECT(eyeray, texcoords);
8 float4 world_ray_from = float4(unpack_2half(temp.x).x,
9 unpack_2half(temp.y).x,
10 unpack_2half(temp.z).x,1.0);
11 float4 world_ray_dir = float4(unpack_2half(temp.x).y,
12 unpack_2half(temp.y).y,
13 unpack_2half(temp.z).y,0.0);
14 float4 ray_from = mul(AFT,world_ray_from);
15 float4 ray_dir = mul(AFT,world_ray_dir);
16 float4 curr_pt = texRECT(intersection, texcoords);
17 float obj_dist = distance(float3(unpack_2half(curr_pt.x).x,
18 unpack_2half(curr_pt.y).x,
19 unpack_2half(curr_pt.z).x),world_ray_from.xyz);
20 intersect(AFT,ray_from,ray_dir,world_ray_from,world_ray_dir,hp1,normal1,miss);
21 float4 hit_pt = float4(pack_2half(half2(hp1.x,normal1.x)),
22 pack_2half(half2(hp1.y,normal1.y)),
23 pack_2half(half2(hp1.z,normal1.z)),object_id);
24 //conditionals are used here because the entire Cg shader is always executed
25 return ((distance(hp1,world_ray_from.xyz) < obj_dist) && !miss) ? hit_pt : curr_pt;

Figure 4: Cg code for the construction of an intersection shader.

than just the current depth being stored. It
is only possible to output one four-component
colour (32-bit floating point components) from a
fragment shader, requiring that each component
be packed with two 16-bit values (See figure 5 and
lines 21-23). This output colour value from each
intersection pass is stored in a texture the size of
the output image, and fed as input into the next
pass, ensuring each object intersection is supplied
with correct data.

Figure 5: Intersection texture organisation.

Textures are used as temporary storage, providing
a means to implement the streams in the stream
programming model. The result of a rendering
pass is output to a texture, which can be bound
as an input to a shader in the next rendering pass.
Implementation of this functionality is different
on each platform: under DirectX this texture can

be bound directly as a render target, but under
OpenGL on Linux the framebuffer must be copied
to a texture, a much more costly process.

4.2 Shading Kernel

Currently the Blinn-Phong[6] shading method is
used to calculate the output colour for object in-
tersections. Since there are currently no shadow
rays being traced, there is no object shadowing and
the output colour is made up of only the ambient,
diffuse and highlight lighting components.

5 Quadric Intersection

The class of quadric objects includes cylinder,
cone, ellipsoid, hyperboloid and others, with
spheres and planes as special cases. Using a
general quadric definition allows intersection with
all possible shapes, without separate routines for
each type of object. Treatment of the general case
of quadrics is taken from [7].

Ax2 + 2Bxy + 2Cxz + 2Dx + Ey2

+2Fyz + 2Gy + Hz2 + 2Iz + J = 0 (1)

Equation 1 shows the full expansion of the quadric
expression. This can also be expressed in matrix
form, xT Qx, with xT = [x y z 1] and



Q =


A B C D
B E F G
C F H I
D G I J

 .

In order to build the ray-quadric intersection test,
a quadric is then defined as xT Qx = 0 with the
ray definition x = p + tv. Substituting the ray
definition for x gives:

(p + tv)T Q(p + tv) = 0
pT Qp + pT Qtv + tvT Qp + tvT Qtv = 0

(vT Qv)t2 + (pT Qv + vT Qp)t + pT Qp = 0
(vT Qv)t2 + (2vT Qp)t + pT Qp = 0 (2)

(Q is symmetric)

The result of Equation 2 is in the form of a
quadratic expression (At2 + Bt + C = 0), allowing
extraction of the terms A (vT Qv), B (2vT Qp)
and C (pT Qp). These can be used to calculate
the discriminant (B2 − 4AC) which, if less than
or equal to zero, means there are no intersections
with this quadric (tangential intersections are
treated as nonintersecting). The quadratic
equation can then be used to calculate the two
possible intersection values:

t =
−B ±

√
B2 − 4AC

2A

The object space normal for each hitpoint can then
be calculated for each t intersection value. This
will need to be transformed back to world space
for use in shading.

normal = normalize(Q(p + tv))

In order to keep the intersection routines simple,
rather than transforming the objects themselves
when we want to construct a deformation, we
transform the rays, allowing us to operate on unit
primitives. Each time we want to do a primitive
intersection test, the ray is transformed into the
object space of the unit primitive.

Since the entire quadric expression is used, it is
possible to define the full complement of quadric
shapes using combinations of the 10 variables. A
unique matrix can then be built to define any of
these primitives. Sample primitives are depicted in
figures 6,7,8,10 and 11 with associated quadric ma-
trices. These images were ray traced using a naive
ray casting application built with the framework
defined in section 4.

(a)
Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Figure 6: Part of a sphereflake, using the sphere
matrix definition in figure 6(a).

6 Conclusion & Extension

In this paper, we have presented a framework for
ray tracing arbitrary objects on programmable
graphics hardware. This allows accurate images to
be produced with fewer intersection tests and less
processing. We built our GPU ray tracer alongside
an existing software implementation, utilising the
same underlying scene structure. In generating
the sphereflake scene (figure 6), the GPU method
was able to achieve 1.11 frames per second (FPS)
while the software implementation ran at 0.53
FPS. These results were measured by timing the
generation of a series of frames with the data
structures rebuilt for each frame. Performance
for this method is inhibited by the need to read
back a lot of data to main memory under linux, as
noted at the end of section 4.1. This research was
carried out on a Pentium 4 2.4GHz box running
Fedora Core 1, with an nVidia Quadro FX 3000
graphics card.
It is the intent of our research to further investigate
the use of programmable graphics hardware in ray
tracing and related applications. We will continue
building a full ray tracing model, including
shadow, reflection and refraction rays. Recursion
is not possible on graphics hardware, so a mutiple-
pass method will be required. By using the GPU
to do the final rendering of scenes, interactive
animation for such systems may become a reality.
The CPU will be able to process information
for the next frame, using the GPU to finish
rendering the current frame. This will make it
possible to quickly produce ray traced images
using commodity graphics hardware.



Figure 7: Cone primitive, defined using figure
9(a).

Figure 8: Paraboloid primitive, defined using
figure 9(b).

Q =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


(a)

Q =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0


(b)

Q =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


(c)

Q =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


(d)

Figure 9: Matrices defining the unit cone, paraboloid and hyperboloid primitives.

Figure 10: Hyperboloid (1 Sheet) primitive,
defined using figure 9(c).

Figure 11: Hyperboloid (2 Sheets) primitive,
defined using figure 9(d).

References

[1] T. J. Purcell, I. Buck, W. R. Mark, and P. Han-
rahan, “Ray tracing on programmable graphics
hardware,” in Proceedings of the 29th annual
conference on Computer graphics and interac-
tive techniques, pp. 703–712, ACM Press, 2002.

[2] N. A. Carr, J. D. Hall, and J. C. Hart,
“The ray engine,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pp. 37–46, Eurographics
Association, 2002.

[3] W. R. Mark, R. S. Glanville, K. Akeley, and
M. J. Kilgard, “Cg: a system for programming
graphics hardware in a c-like language,” ACM
Trans. Graph., vol. 22, no. 3, pp. 896–907, 2003.

[4] NVIDIA Corporation, Cg Toolkit,
Release 1.2, January 2004. Software
and Documentation available at
http://developer.nvidia.com/object/
cg toolkit.html.

[5] T. J. Purcell, Ray Tracing on a Stream Pro-
cessor. PhD thesis, Stanford University, March
2004.

[6] J. F. Blinn, “Models of light reflection for
computer synthesized pictures,” in Proceedings
of the 4th annual conference on Computer
graphics and interactive techniques, pp. 192–
198, ACM Press, 1977.

[7] C. A. Lindley, Practical Ray Tracing in C.
Wiley, 1992. ASIN: 0471573019.


	Introduction
	Programmable Graphics Hardware
	Triangle Ray Tracing
	Ray Tracing Framework
	Intersection Kernel
	Shading Kernel

	Quadric Intersection
	Conclusion & Extension

