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Abstract—Scene classification in indoor and outdoor envi-
ronments is a fundamental problem to the vision and robotics
community. Scene classification benefits from image features
which are invariant to image transformations such as rotation,
illumination, scale, viewpoint, noise etc. Selecting suitable
features that exhibit such invariances plays a key part in
classification performance.

This paper summarizes the performance of two robust
feature detection algorithms namely Scale Invariant Feature
Transform (SIFT) and Speeded up Robust Features (SURF) on
several classification datasets. In this paper, we have proposed
three shorter SIFT descriptors. Results show that the proposed
64D and 96D SIFT descriptors perform as well as traditional
128D SIFT descriptors for image matching at a significantly
reduced computational cost. SURF has also been observed to
give good classification results on different datasets.
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I. INTRODUCTION

Images of one scene may be taken from different view-

points or may suffer transformations such as rotation, noise

etc. So it is likely that two images of the same scene will

be different. The task of finding similarity correspondences

between two images of the same scene or object has thus

become a challenging problem in a number of vision ap-

plications. Such applications range from image registration,

camera calibration, object recognition, scene localization in

navigation systems, image retrieval based search engines etc.

For image matching, extraction of such information (i.e.

features) is required from the images which can provide

reliable matching between different viewpoints of the same

image. Feature detection occurs within an image and seeks

to describe only those parts of that image where we can get

unique information or signatures (i.e. feature descriptors).

During training, feature descriptors are extracted from sam-

ple images and stored. In classification, feature descriptors of

a query image are then matched with all trained image fea-

tures and the trained image giving maximum correspondence

is considered the best match. Feature descriptor matching

can be based on distances such as Euclidean, Mahalanobis

or distance ratios.

The search for distinctive features from images is divided

into two main phases. First, ”keypoints” are extracted from

distinctive locations from the images such as edges, blobs

etc. Keypoint detectors should be highly repeatable. Next,

neighborhood regions are picked around every keypoint

and distinctive feature descriptors are computed from each

region.

A variety of feature detection algorithms have been pro-

posed in the literature to compute reliable descriptors for

image matching [1], [2], [3], [4], [5], [6], [7], [8]. SIFT

and SURF descriptors are the most promising due to good

performance and have now been used in many applications.

A thorough comparison of many feature descriptors was

reported in [12] which concluded that overall SIFT outper-

forms other detectors. However, SURF was not included in

the comparisons and although it has been claimed to be

superior to SIFT by the proposers of SURF [6], this has not

been independently verified by other researchers on large

datasets, although it has been done on several small datasets

[13], [14].

In this paper, we offer a substantive evaluation of SIFT

and SURF on several large sets of images and further test

each algorithm on typical image transformations such as

rotation, scale, blurring and brightness variance. We also

compare three shorter SIFT descriptors on these datasets.

In section 2, we briefly discuss the working mechanism

of SIFT and SURF followed by discussion of our proposed

shorter SIFT descriptors. In section 3, we throughly com-

pare matching performance of all descriptors on standard

benchmark datasets. We also evaluate all descriptors perfor-

mance against possible image transformations. The article is

concluded in section 4.

II. METHODS

A. SIFT Detector

The SIFT detector has four main stages namely, scale-

space extrema detection, keypoint localization, orientation

computation and keypoint descriptor extraction [5].

The first stage uses Difference of Gaussians (DoG) to

identify the potential keypoints. Several Gaussian blurred
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images at different scales are produced from the input image

and DoGs are computed from neighbours in scale space. In

the second stage, candidate keypoints are located by finding

extrema in the DoG images that are locally extremal in space

and scale. Spatially unstable keypoints are eliminated by

thresholding against the ratio of eigenvalues of the Hessian

matrix (unstable edge keypoints have a high ratio, and stable

corner keypoints have a low ratio), low contrast keypoints

are eliminated and the remaining keypoints are localised by

interpolating across the DoG images. The third stage assigns

a principal orientation to each keypoint.

The final phase computes a highly distinctive descriptor

for each keypoint. In order to achieve orientation invari-

ance, the descriptor coordinates and gradient orientations

are rotated relative to the key point orientation. For every

keypoint, a set of orientation histograms are created on 4x4

pixel neighborhoods with 8 bins each (using magnitudes

and orientation of samples in 16 x 16 region around the

keypoint). The resulting feature descriptor will be a vector of

128 elements that is then normalized to unit length to handle

illumination differences. Descriptor size can be varied, how-

ever best results are reported with 128D SIFT descriptors [5].

SIFT descriptors are invariant to rotation, scale, contrast and

partially invariant to other transformations.

The SIFT descriptor size is controlled by its width i.e.

the array of orientation histograms (n x n ) and number of

orientation bins in each histogram (r). The size of resulting

SIFT descriptor is rn2 [5]. The value of n affects the window

size around the keypoint as we use 4 x 4 region to capture

pattern information e.g. for n = 3, we will use a window

of size 12 x 12 around the keypoint. Various sizes were

analyzed in [5] and it was reported that 128D SIFT is

superior in terms of matching precision, i.e. n = 4 and

r = 8. Most other work has used standard 128D SIFT

features while very few have tried smaller SIFT descriptors

for small scale works e.g. 36D SIFT features from 3 x 3

subregions, each with 4 orientation bins, with few target

images are used in [18].

Smaller sized descriptors use less memory and result in

faster classification but precision rates may be affected. No

research article has investigated the classification perfor-

mance of SIFT descriptors of size other then 128.

B. Proposed changes in existing SIFT

We have implemented our own SIFT algorithm and have

proposed not to double the input image in the first stage

as it results in generation of a huge number of trained

features. In traditional 128D SIFT, a 16 x 16 window is

used around the detected keypoint. That window is divided

into sixteen 4 x 4 regions. From every region, we compute

the gradient information and summarize that into 8 bin

orientation histograms. Gradients far away from the keypoint

are given less weight compared to near ones. Magnitudes are

Gaussian weighted based on distance before being adding to

the corresponding orientation bins. Finally we get a 4 x 4

array of orientation histograms each one having 8 values

resulting in 128D SIFT descriptor as shown in Fig. 1.

Figure 1. 4 x 4 computed orientation histogram arrays in 128D SIFT.

Reduced size SIFT descriptors can be generated by skip-

ping orientation values from some regions of the 4 x 4 array.

Different square arrays of orientation histograms have been

tested in [5], but other choices are possible. We have tested

three other choices all shown in Figure 2:

1) 96D SIFT: Ignore corner regions.

2) 64D SIFT: Ignore corner regions and average neigh-

boring outside regions.

3) 32D SIFT: Use central 2 x 2 block.

Figure 2. Customized 4 x 4 orientation histogram array configurations
used to generate shorter SIFT descriptors.

C. SURF Detector

SURF, also known as approximate SIFT, employs integral

images and efficient scale space construction to generate

keypoints and descriptors very efficiently. SURF uses two

stages namely keypoint detection and keypoint description

[6]. In the first stage, rather than using DoGs as in SIFT,

integral images allow the fast computation of approximate

Laplacian of Gaussian images using a box filter. The compu-

tational cost of applying the box filter is independent of the

size of the filter because of the integral image representation.

Determinants of the Hessian matrix are then used to detect

the keypoints. So SURF builds its scale space by keeping

the image size the same and varies the filter size only.

The first stage results in invariance to scale and location.

In the final stage, each detected keypoint is first assigned

a reproducible orientation. For orientation, Haar wavelet

responses in x and y directions are calculated for a set of

pixels within a radius of 6σ where σ refers to the detected

keypoint scale. The SURF descriptor is then computed by

constructing a square window centered around the keypoint
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and oriented along the orientation obtained before. This

window is divided into 4 x 4 regular sub-regions and Haar

wavelets of size 2σ are calculated within each sub-region.

Each sub-region contributes 4 values thus resulting in 64D

descriptor vectors which are then normalized to unit length.

The resulting SURF descriptor is invariant to rotation, scale,

contrast and partially invariant to other transformations.

Shorter SURF descriptors can also be computed however

best results are reported with 64D SURF descriptors [6].

We have used the OpenSURF implementation [20] and

use k-d trees to speed up nearest neighbor matching. 64D

SURF feature descriptors are extracted and classification is

performed in the same way as we do in SIFT. The default

threshold used in the supplied code is (d1/d2 < 0.65) to

check the correspondences where d1 and d2 refer to query

and trained image vectors. The threshold is kept the same

in all experiments.

III. RESULTS

A. Evaluation Method

Performance is measured using an image matching task

on a number of datasets using a naive matching algorithm.

Keypoints and feature descriptors are extracted from each of

the images in the dataset and all descriptors are inserted into

a k-d tree [21]. To perform image classification, all nearest

neighbors of the features in the query image are found in the

image collection. If the nearest neighbor is within a threshold

in feature space, then a feature correspondence is recorded.

The matched image is selected as that image with the

most feature correspondences from the collection. We have

identified distance thresholds for all SIFT descriptors by

observing the similarity variance between different feature

descriptors. We have used 170, 160, 150 and 90 distance

thresholds respectively for our 128D, 96D, 64D and 32D

SIFT descriptors during image matching. These thresholds

work well in the classification of images.

B. Data Sets

All features and descriptors have been evaluated for image

matching on different benchmark datasets [19], [22], [23],

[24]. Samples from each datasets are shown in Figure 3.

1) David Nister Dataset: The dataset described in [19]

contains 4 different images of 2500 objects i.e. 10,000

images in total. The dataset contains a variety of indoor and

outdoor environmental images and is used as a standard to

test the robustness of classification algorithms. To test the

classification performance, we have selected the first 500

object images from the dataset (i.e. first 2000 images are

picked). The first image of every object is used for testing

while the remaining three images have been used for training

(i.e. 500 test and 1500 trained images). Approximately

0.47M SIFT and 0.62M SURF trained features are extracted

from the training set.

Figure 3. Sample images from standard Benchmark Datasets

2) Indoor Dataset: The dataset described in [22] contains

indoor images taken from the Computer Science building at

Anonymous University. It is a standard office-type building

with some classroom size computer laboratories — many

different locations within the building look very similar. The

dataset covers about 30 indoor locations and contains about

700 images. The dataset is challenging because it contains

many similar looking images. We have used 630 and 70

images for training and testing with about 0.17M SIFT and

0.42M SURF extracted trained features. At least two query

images are picked from every indoor location resulting in a

total of about 70 images.

3) Hongwen Dataset: The dataset reported in [23] con-

tains 8000 indoor images covering one floor of a building

taken over a period of time. We have used 2250 and 100

images for training and testing with 12M SIFT and 14M

SURF extracted trained features. 100 test images have been

provided separately in the used dataset.

4) Caltech Dataset: The dataset reported in [24] con-

tains images for 50 building exteriors around the Caltech

campus (California Institute of Technology). Five different

images are taken for each building from different angles and

distances resulting in 250 images. The first image of every

building is used for testing while the remaining four are used

for training with about 0.08M SIFT and 0.2M SURF trained

features.

C. Image Transformations

We have evaluated matching performance of all proposed

descriptors against different image transformations on the

David Nister dataset [19]. We have used 500 images of

different scenes to test the invariance characteristics of

features.

1) Rotation Invariance: To test rotation invariance, the

first 500 object images from the dataset are picked and

used for testing. These test images are rotated at different
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angles in a clockwise direction to generate 500 trained

images. imrotate function of MATLAB with ’bilinear’

interpolation is used for performing rotations. Results have

been summarized in Figure 4 and show that SIFT (32D,

64D, 96D and 128D) and SURF are rotation invariant.

Figure 4. SIFT vs SURF Performance on Rotated Images

2) Illumination Invariance: To test illumination invari-

ance, the same first 500 object images have been used from

the dataset. These test images are used to generate trained

images for classification.

To test the brightness, 500 test images are bright-

ened by adding or subtracting a number of pixel value

offsets (i.e. every pixel’s red, green and blue chan-

nel intensities are incremented equally). The sum is

clamped to be within 0-255. The offsets tested are:

50, 70, 100, 120,−30,−50,−70,−90. Results are summa-

rized in Figure 5 and Figure 6 and show that SIFT (64D,

96D and 128D) and SURF are invariant to illumination and

perform well. 32D SIFT does not perform well on severely

darkened images but does well on brightened images.

Figure 5. SIFT vs SURF Performance on Brightened Images

3) Noise Invariance: To test noise invariance, we have

used the imnoise function of MATLAB and have applied

three types of noise to the test images: Gaussian, salt and

pepper and speckle to generate the trained data. Image pixels

are first scaled to 0-1 before applying noise. We have added

Gaussian white noise with σ2 = 0.1 and σ2 = 0.2, salt

Figure 6. SIFT vs SURF Performance on Darkened Images

and pepper noise with density of 15% and 35%, and mul-

tiplicative white noise with mean 0 and σ2 = 0.04. Results

in Figure 7 show that detectors degrade most noticably with

salt and pepper noise and this effects smaller sized detectors

more severely than larger detectors.

Figure 7. SIFT vs SURF Performance on Noisy Images

D. Blurring

The fspecial function of MATLAB is used to generate

a Gaussian filter (20 x 20) and filtering of the image is

then done using imfilter function. Experiments have tested

various values of Gaussian blur i.e. σ = 5, σ = 10 and

σ = 20. Figure 8 clearly shows that all SIFT and SURF

handle blurring well. However for a very large amount of

blurring i.e. σ = 20, trained images become too blurry. In

such cases, 32D SIFT, and SURF perform worst, and it is

not surprising that larger detector sizes are less affected by

high blurring factors.

1) Scale: To test scaling, we selected 500 objects from

the dataset for which there were two images available at

different scales (i.e. a total of 1000 images). We did not
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Figure 8. SIFT vs SURF Performance on Blurred Images

select the first 500 object images as there were no scaled

images available in most of the cases. All selected object im-

ages have a scale transformation while some have additional

smaller viewpoint transformations as well. The first image

has been used for training while the other is used for testing

in both SIFT and SURF. Results in Figure 9 show that for

image scaling, 64D, 96D and 128D SIFT outperform SURF.

32D SIFT underperforms but still performs comparable to

SURF which indicates that SIFT has excellent invariance to

scaling even with smaller descriptors.

Figure 9. SIFT vs SURF Performance on Scaled Images

2) Viewpoint: To test viewpoint, we selected 500 objects

from the dataset for which there were two images available

in the dataset taken from different viewpoints i.e. a total of

1000 images. The viewpoint angles vary for every object.

The first object image is used for training while the other is

used for testing. Results in Figure 10 show that all descrip-

tors perform worse than in other experiments, but 64D, 96D

and 128D SIFT still outperform SURF. Interestingly, 64D

SIFT produces the best performance.

E. General Matching

In the final experiment, we have evaluated the classifica-

tion performance of all descriptors using the four real world

datasets described in Section III-B. In all cases, the test and

training images are independent.

We have used 1500 images for training and 500 images

for testing in David Nister dataset (0.47M SIFT and 0.62M

Figure 10. SIFT vs SURF Performance on images of different viewpoints

SURF extracted trained features), 630 training and 70 test

images for Indoor dataset (0.17M SIFT and 0.42M SURF

features), 2250 training and 100 test images for Hongwen

Dataset (12M SIFT and 14M SURF features) and 200

training and 50 test images for CALTECH dataset (0.08M

SIFT and 0.2M SURF features). Classification results are

shown in Figure 11 which show that all SIFT and SURF

descriptors perform well on all datasets except for 32D SIFT.

Figure 11. SIFT vs SURF Classification Performance on Benchmark
Datasets

Execution time for each of the methods is shown in Table

I. As expected, using smaller descriptors in SIFT methods

results in significant speedups which can be important for

some applications. Average matching time is surprisingly

high for SURF. Partly because SURF produces many more

features and partly because of the implementation [20].

Table I
AVERAGE MATCHING TIME REQUIRED TO MATCH ONE QUERY IMAGE

BY ALL DESCRIPTORS.

128D SIFT 96D SIFT 64D SIFT 32D SIFT SURF
Time 59 sec 33 sec 18 sec 11 sec 80 sec

IV. DISCUSSION AND CONCLUSION

In this paper we have reported a thorough analysis. Most

descriptors performed reasonably well except for 32D SIFT

which has underperformed. The reason is that 32D SIFT
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descriptors are very small and thus fail to capture sufficient

pattern information. This leads to larger wrong matches

during classification. The important findings of this paper

are as follows:

1) 128D, 64D and 96D SIFT are similar in matching

accuracy across most tests.

2) 64D SIFT is superior for matching images with dif-

ferent viewpoints and this is likely due to the smaller

window size which minimizes occlusion effects.

3) SURF is as good as SIFT on most tests except for

scaling, large blur and viewpoint invariance.

4) On real image datasets there is little to separate the

different SIFTs (excluding 32D SIFT) and SURF

except for efficiency.

5) The proposed 64D SIFT should be preferred in most

future applications as it is as accurate as 128D SIFT,

but it also offers almost three times faster image

matching and half the memory requirements.
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