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Abstract
We introduce a method for producing more efficient cascade classifiers. To do so, we empirically
model the execution cost of AdaBoost classifiers with fixed height decision trees as the weak learn-
ers. Our empirical model is general enough to model many disparate problems. We use the empir-
ical execution cost model to optimize the parameters required for building an optimal cost cascade
classifier - rather than relying on ad hoc parameter settings. We demonstrate our method on several
classification problems including rare event detection problems such as face detection and several
non-rare event problems from the UCI repository. We show that cascading classifiers can provide
significant speedups for non-rare event problems and our model provides good estimates for the
attainable speedups.

Keywords: cascade classifiers

1. Introduction

In their influential papers, Viola and Jones (2001, 2004) describe a method for finding faces in im-
ages or video input. The method is very fast (achieving approximately 15 frames/sec on a 700MHz
Pentium III), and quite accurate (according to Figure 7 in the paper, achieving greater than 90%
correct detection rate for only 0.000053% false positives). One of the major contributions of their
work is the use of a cascade of classifiers to significantly speed up run time classification. The use
of a cascade is a very general idea and could be applied to a large class of detection problems, but
has thus far been used only when the number of expected detections is small compared to the total
number of samples — that is, rare event detection problems. Since the work of Viola and Jones
(2001, 2004), several other authors have used cascaded classifiers for face detection and other tasks
(Schneiderman, 2004; Grossmann, 2004; Wu et al., 2004; Lienhart et al., 2003; Zhang et al., 2004;
Huang et al., 2004; Sun et al., 2004; McCane and Novins, 2003).

There are two main limitations to the work of Viola and Jones (2001, 2004). Firstly, the training
algorithm they use is quite slow taking on the order of weeks according to the authors. Secondly,
their method for determining the target false positive rate and detection rate at each stage in the cas-
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cade is ad hoc—it appears to be based on the experience of the developers. We focus predominantly
on the second problem for producing near optimal cascades.

This paper makes several important contributions to the theory and practice of cascaded clas-
sifiers. We develop an empirical model of the performance of cascaded AdaBoost decision trees
that takes into account both false positive and true positive rates (Viola and Jones (2001, 2004) only
used false positive rates). Given this model, we show how significant speedups can be obtained for
a wide class of classification problems — even for those problems which do not have a significantly
larger proportion of negative examples. We demonstrate and provide source code for a method of
automatically setting the parameters of the cascade rather than the ad hoc manner used by Viola
and Jones (2001, 2004). We also provide general guidelines for manually setting such parameters.
Minor contributions include the development of a simple optimization procedure for problems with
product equality constraints, a method for estimating the execution cost of a cascaded classifier and
the likely speedup obtained. Finally, we demonstrate our method on several classification problems.

2. Prior Work
As far as we are aware, only four papers address the problem of automatically learning the cas-
cade parameters (Grossmann, 2004; Sun et al., 2004; McCane and Novins, 2003; Chen and Yuille,
2005). In Grossmann (2004) a single stage classifier is initially built using the standard AdaBoost
algorithm. The weak classifiers used in the single classifier are then partitioned using dynamic pro-
gramming to produce a cascaded classifier of near optimal speed with almost identical behaviour to
the original classifier. This is a very elegant solution to the problem since there is no need to specify
the number of levels in the cascade a priori. Further, different cascaded classifiers which perform
at different points on the receiver operating characteristic (ROC) curve can easily and quickly be
generated, allowing for significant flexibility of the final classifier. However, one of the reasons that
the method of Viola and Jones (2001, 2004) could produce such good results is that new negative
data could be sampled at each new cascade stage. This allowed the method to achieve very low false
positive rates by covering a much larger portion of the input space than might otherwise have been
possible. It is unclear whether a single boosted classifier could achieve similar results, although
techniques such as that proposed by Chawla et al. (2004) might be applicable. Still, the practical
efficacy of the method of Grossmann (2004) is yet to be established.

Sun et al. (2004) introduce the idea of cascade risk into a cost function which is then used to
automatically determine the optimal trade-off between false positives and false negatives at each
stage. The cost function includes a weighted sum of cascade risk and computational complexity
where the weight is determined heuristically. As such, the optimization produces an heuristic trade-
off between the most accurate classifier and classifier efficiency. The training algorithm in this case
requires setting an upper limit on the number of simple features for each cascade stage so that the
algorithm will terminate. The ROC curve produced was superior to that of Viola and Jones (2001,
2004), but no indication of classifier efficiency was given in the paper. At best, their work includes
classifier efficiency only heuristically as this is not their main focus.

Chen and Yuille (2005) solve the problem in a greedy manner. However they seek to build a
cascade which satisfies a given time constraint, and so they choose the next classifier in the cascade
as one which leaves the maximum time available for later stages, subject to the number of negatives
eliminated from consideration. It is clear that this method is not optimal as one could imagine a
situation where a zero-cost classifier with a false positive rate of 1.0 is chosen as the next one.
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Further, they require that the detection rate of the overall classifier is fixed to 1.0 on the training
data, and do not consider problems where that condition may be relaxed.

In previous work, two of us (McCane and Novins, 2003) introduced a technique for producing
optimal speed cascade classifiers by modeling the relationship between classifier cost and false
positive rate assuming a fixed detection rate. We extend this work in three ways in this paper. Firstly,
we apply the idea of cascaded classifiers to problems which are not necessarily “rare event”, and
show that significant speedups can still be obtained. Secondly, we model classifier cost as a function
of both false positive rate and detection rate which allows for increased flexibility in producing fast
classifiers. This is discussed in Section 5. Finally, we use the results of previous cascade layers at
the current boosting level. This guarantees the cascaded classifier will produce similar results to an
equivalent monolithic classifier.

3. Method Overview
Our method for building near optimal cascades involves four basic stages:

1. Incrementally build a monolithic AdaBoost classifier in the usual way, but generate ROC
curves for the classifier as each new simple classifier is added to the ensemble,

2. Estimate a cost model from the family of ROC curves,

3. Estimate parameters for an optimal cascade using the cost model,

4. Build the final near-optimal cascade classifier using either an existing monolithic classifier
(from stage 1), or building the cascade anew.

Each of these steps is discussed in the following sections.

4. Generating ROC curves
A monolithic AdaBoost classifier is constructed in the usual way (Freund and Schapire, 1996) up
to a maximum length. We have found that 100 boosting rounds is typically enough to adequately
perform the modeling. As each new weak classifier is added to the ensemble, an ROC curve is
generated by adjusting the AdaBoost threshold to achieve a given detection rate on an independent
test set. This results in a family of ROC curves that illustrate the evolution of the AdaBoost classifier
as more weak classifiers are added. Figure 1 shows an example for the covtype data set. This family
of ROC curves creates an approximation to an ROC surface. We show in the next section how we
can model the ROC surface.

5. Cost Model
As noted in the introduction the goal of using a cascade of classifiers is to improve the average run
speed of the classifier. Suppose that cascade stage i accepts the proportion pi of examples passed to
it, where:

pi = (finf + dinp)/(nf + np) (1)

where fi is the false positive rate of cascade stage i, nf is the number of false examples, di is
the detection rate of cascade stage i, and np is the number of positive examples. Note that this is
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Figure 1: A family of ROC curves for the covtype data set.

a more complete model than that used by Viola and Jones (2001, 2004) since they assumed that
np ≈ 0, which is valid for rare event detection such as face detection, but not valid for more general
classification problems. Associated with each stage is a certain cost of execution, Ci. Stage 1 is
always executed. Stage 2 is executed only for those examples that successfully passed through stage
1. Similarly, stage 3 is only executed for those examples which successfully passed through stages
1 and 2, and so on. This then gives us a clear expression for the average cost of execution of the
cascade:

Ca = C1 + C2p1 + C3p1p2 + ... (2)

= C1 +
N

∑

i=2



Ci

i−1
∏

j=1

pj



 (3)

Figure 2(b) gives a pictorial view of how this works. We seek to minimize Ca, subject to relevant
constraints, to find the optimal speed classifier.

5.1 The Cost of AdaBoost
To minimize Ca we need a model for the execution cost of each of the cascade stages Ci. In other
words, we need to model the cost of an AdaBoost classifier. Freund and Schapire (1997) proved
that the training error of an AdaBoost classifier is bounded above by:

E = exp(−2G(T )) (4)
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Figure 2: Classifier cascades

where G(T ) =
∑T

t=1 γ2
t , T is the number of weak classifiers in the ensemble, γt = 1/2 − εt, and

εt is the training error of weak classifier t.
We have found that G(T ) can be approximated by:

G(T ) ≈ a(t− b)c (5)

where a > 0, b > 0, and 0 < c < 1.0 are appropriate constants. Figure 3 shows examples of G(t)
on several of the problems from the UCI data repository. In this paper, we have restricted our study
to weak learners which are height restricted decision trees, with heights of 1 (decision stumps), 2 or
3. Note that the approximation used in Equation 5 has similar properties to the function G(T ) - in
particular the gradients of both approach 0 as T approaches infinity.

Now γ (or ε) is actually a combination of the false positive and the false negative rates. We
are interested in not just modeling the error of AdaBoost with respect to the computational cost of
the classifier, but rather the more detailed function of computational cost with respect to the false
positive and false negative rates. In other words, we need to generate ROC curves for each cost
point of an AdaBoost classifier. ROC curves can be generated for AdaBoost classifiers by altering
the decision threshold of the ensemble as in Viola and Jones (2001, 2004). Therefore, for any
AdaBoost classifier, we can choose an appropriate detection rate or false positive rate by adjusting
the threshold appropriately. If we fix the detection rate, then the false positive rate will vary with
cost in a similar way to the overall error rate as in Figure 3.

Ultimately, we seek a cost function that is dependent on both the false positive rate and the
detection rate:

Ci = g(f, d),

where g is an appropriate two-dimensional function, f is the false positive rate and d is the de-
tection rate of layer i in the cascade. Unfortunately, it is extremely difficult to directly estimate a
two-dimensional function using non-linear regression. To overcome this problem, for each fixed
detection rate, we estimate the function parameters independently and then perform a second re-
gression on the parameters of the first function. For a fixed detection rate, we use a logarithmic
function:

gd(f) = ad + (log(f)/(−cd))
1.0/bd , (6)

where gd is the cost, ad, cd and bd are our constant parameters that must be estimated, and the
subscript d is used to indicate that these parameters are in fact dependent on the detection rate. For
ease of modeling, we can invert Equation 6 to give the false positive rate as a function of the cost:

f(gd) = e−cd(gd−ad)bd . (7)
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Figure 3: Model fit for the sum of gammas function. The data is shown using AdaBoost with fixed
height decision trees on several examples in the UCI data repository. Where the problem
is a multi-class one, one of the classes is chosen as the class to be detected and all others
are considered negative examples.
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Figure 4: Cost as a function of false positive rate, for several fixed detection rates.

Note that this equation is of the same form as the combination of equations 4 and 5. The parameter
ad simply shifts the curve along the axis, and can be estimated directly from the data as the cost
point, or number of weak classifiers, where the false positive rate first begins to drop, and is therefore
a discrete parameter. For high detection rates, this may take several weak classifiers, and hence ad

increases as the detection rate increases. We estimate ad in this way to simplify the non-linear
regression problem, similar to an expected-value parameter (Ratkowsky, 1990).

The parameter bd is best estimated as a constant, so we perform two rounds of regression - the
first is used to estimate bd and the second to estimate cd given a fixed bd. The problem is solved using
the Levenberg-Marquardt method (in our case, using Mathematica’s NonLinearRegress function
Wolfram Research (2003)). Figure 4 shows several curves at different detection rates and their
associated best fit curves. The curves shown here are generated from an independent test set and
therefore show test error rather than training error. Consequently, we can see some examples of
overtraining, but the general form of the approximation appears to remain valid. To further improve
the generality of the model, a nine-fold cross-validation with a random partition into a 50% training
and 50% test set is used where feasible (for the face detection problem this isn’t feasible due to the
long training times). The false positive rate displayed in feasible cases is simply the average rate
across the different runs.

Figure 5 shows how the parameter cd varies as the detection rate increases. We model this curve
with a quartic function using linear regression.

Modeling the ad parameter from Equation 7 is more difficult since it is a discrete parameter. We
need our 2D model to be continuous to allow for optimization however, so we use a sum of logistic
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Figure 5: The variation of parameter cd with respect to the detection rate for various classification
problems. The data contains 200 plot points.
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step functions of the form:

ad = α

N
∑

i=1

[βi/(1.0 + exp(−σi ∗ (x− δi)))] ,

where α is the starting height, βi is the step size, σi is the step slope (which is very large in all
cases), and δi is the step position. Figure 6 shows example data and its corresponding fit function.

Our component cost function, then is:

K(f, d) = a(d) + (log(f)/− c(d))−1.0/b(d)

The cost of each stage of the cascade is equal to the cost of getting from the current false positive
rate to the new false positive rate. This cost can be estimated as follows:

Ci(f, d) = K(
i

∏

j=1

fj,
i

∏

j=1

dj)−K(
i−1
∏

j=1

fj,
i

∏

j=1−1

dj) (8)

where fi, di are the component false positive rates and detection rates respectively of each stage in
the cascade.

6. Optimizing the Cost Function
We are now able to optimize Equation 3. Rewriting it to illustrate the final form of the function
gives:

Ca(f1, f2, ..., fN , d1, d2, ..., dN ) = C1(f1, d1) +

N
∑

i=2



Ci(fi, di)

i−1
∏

j=1

pj



 (9)

where Ci(fj , dj) is defined in Equation 8, and pj is defined as in Equation 1. We solve Equation 9 as
a constrained numerical nonlinear optimization problem. The constraints applicable to the problem
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are:

fl ≤fi ≤ 1 for 1 ≤ i ≤ N

0 ≤di ≤ du for 1 ≤ i ≤ N

N
∏

i=1

fi ≤ F

N
∏

i=1

di ≥ D

where F is the target false positive rate, D is the target detection rate, fl is some achievable min-
imum false positive rate (fl ≈ 0), and du is some achievable maximum detection rate (du ≈ 1).
In practice, the nonlinear inequality constraints can be replaced by equality constraints by noting
that if the products are not equal to the constraint values, then the method is clearly doing more
work than it needs to and a classifier which is not less efficient can always be found that satisfies the
equality constraints. To find the optimal speed classifier, we need to optimize over each of the f i, di

and over N , the number of stages in the cascade.
The problem as specified can be solved using reduced gradient type methods (Gill et al., 1981)

and we have used a variation of these types of methods. In typical reduced gradient methods, a step
is made in the tangent space of the constraints, potentially producing an infeasible solution, and a
further correction step is made to recover feasibility. In our solution we maintain feasibility at all
times by taking advantage of the special nature of the constraints. The algorithm is based on the
following insight. Consider the constrained minimization problem:

minimize f(x1, x2) (10)
subject to x1x2 = k (11)

where k is some constant. Using the constraint, we can transform this problem to an unconstrained
minimization:

minimizef(x1, k/x1). (12)
For problems with more than two variables, we can fix all but two of the variables, perform a
minimization, then fix all but another two and iterate until convergence. The final algorithm is
given in Algorithm 1. A potentially more efficient version would actively choose which pairs of
variables to optimize over rather than simply choosing the neighbours, but in all cases we found,
the algorithm converged in a reasonable amount of time. We have also empirically investigated
the convergence of the algorithm and optimality of the solution using different starting points for
the search by randomly perturbing the starting false positive and detection rates (while maintaining
feasibility). For each optimization we have tested 10 different starting points and in all cases the
algorithm converged on the same solution. We have also experimented with Matlab’s fmincon
optimization function but found it to be less robust than our method, but when it did converge, it
found the same solution.

7. Building the Classifier Cascade
Algorithm 1 returns the target false positive and detection rates that a cascade should achieve to
minimize the execution cost of the classifier. We use a similar technique to that described by Viola
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Algorithm 1 Minimizing the Cost Function
Require: N > 0, 0 ≤ F ≤ 1, 0 ≤ D ≤ 1
Ensure: Ca is minimized

fi ← F 1/N∀i ∈ [1, ..., N ]
di ← D1/N∀i ∈ [1, ..., N ]
while not converged do

for i = 1 to N − 1 do
minimize Ca(fi, kf/fi, di, kd/di) where:

kf = Ffifi+1/(
∏N

i=1 fi), and
kd = Ddidi+1/(

∏N
i=1 di), and

f1, ..., fi−1, fi+2, ..., fN , d1, ..., di−1, di+2, ..., dN are held constant.
end for

end while
return f1, ..., fN , d1, ..., dN

and Jones (2001, 2004) to build our cascades except for two important differences. First, when the
number of negative examples is limited as in most classification problems (unlike face detection
for which an almost infinite number of negative examples can be generated), it is not helpful to
eliminate negative examples correctly classified by previous stages as this can lead to overtraining
problems for later stages (due to having very few negative training examples to work with).

We have also independently discovered a technique of reusing previous cascade stages similar
to that reported by Sochman and Matas (2004). In our case, we use the evaluation from the previous
level in the cascade as a starting point for the current level. If we consider the output hypothesis for
level i of the cascade as:

hi(x) =

{

1 if ei(x) > Bi

0 otherwise
(13)

where:

e1(x) =

T 1

∑

t=1

(log(
1

β1
t

))h1
t (x), (14)

B1 =
1

2

T 1

∑

t=1

log(
1

β1
t

), (15)

ei(x) = ei−1(x) +

T
∑

t=1

(log(
1

βi
t

))hi
t(x), (16)

Bi = Bi−1 +
1

2

T i

∑

t=1

log(
1

βi
t

), (17)

and βi
t = εi

t/(1 − εi
t), εi

t is the error of weak classifier t in cascade level i, and hi
t(x) is the output

of weak classifier t in cascade level i. Equations 14 and 15 are the equations for a monolithic
AdaBoost classifier. Equations 16 and 17 use the evaluations from the previous layer and thus
produce an evaluation identical to an equivalent monolithic AdaBoost classifier.
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The final algorithm for building the cascade classifier is given in Algorithm 2. The function
AdaBoostAdd simply adds a weak classifier (second parameter) to an existing AdaBoost classifier
(first parameter) given the training data (third parameter). The call to AdaBoostAdd on line 4 allows
the new layer to access the evaluations from the previous layer. The function AdjustThreshold,
adjusts the threshold of the input AdaBoost classifier so the required detection rate is achieved for
the given test data. Note that in this version of the algorithm we do not eliminate already rejected
negative examples, nor generate new negative examples for each layer of the cascade. However,
with problems with a very large number of negative examples (such as face detection) it is still
desirable to do this.

Algorithm 2 Build a Cascade Classifier
Require: Target false positive rates: f1, ..., fN

Require: Target detection rates: d1, ..., dN

Require: Training examples: T
Require: Weak classifier learning algorithm: WeakLearn

1: Cascade← {}
2: (Ttrain, Ttest)← RandomPartition(T )
3: for i = 1 to N do
4: Ci ← AdaBoostAdd(NULL,Ci−1, Ttrain)
5: AdjustThreshold(Ci , Ttest, di)
6: (f ′

i , d
′

i)← Test(Ci, Ttest)
7: while f ′

i < fi do
8: Ci ← AdaBoostAdd(Ci,WeakLearn, Ttrain)
9: AdjustThreshold(Ci , Ttest, di)

10: (f ′

i , d
′

i)← Test(Ci, Ttest)
11: end while
12: Cascade← {Cascade, Ci}
13: end for
14: return Cascade

8. Results

8.1 Data Sets

We have tested our model on eight data sets from the UCI machine learning repository (Newman
et al., 1998). Table 1 documents the sets used and which class was used as the positive class in
multi-class problems. We have also tested our techniques using a face detection problem. We
use the CMU training database to provide the positive examples for training the cascade and the
CMU/MIT upright face set for testing (the combined test sets of Sung and Poggio, 1998; Rowley
et al., 1998). Both sets were provided by Henry Schneiderman (Schneiderman and Kanade, 2000).
The negative examples are sampled from a further 2146 independent images which do not have
faces in them.
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Problem Set Positive Class Number of Positives Number of Negatives
adult >50K 7841 24720

covtype 7 2160 17840
isolet B 240 5998
letter A 789 19211
musk musk 1017 5581

page blocks 2 329 5144
spambase Not Spam 2788 1813

splice Neither 1648 1527
statlog/sat 1 1072 3363

face detection faces 2380 10000

Table 1: Data sets used from the UCI machine learning repository.
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Figure 7: Estimated optimal costs for different cascade lengths for each of the problems studied.

8.2 Cascade Length

Figure 7 shows the estimated optimal cost of cascades of different lengths for each of the problems
studied. In our model, longer cascades are always more efficient, although the efficiency gains
quickly drop off as the length increases. For problems that are not rare events, such as most of the
UCI problems, cascade lengths greater than 5 or 10 levels do not offer much advantage. For rare
event problems, such as face detection, longer cascades are more useful - in our case, little can be
gained from cascades larger than 20 layers.
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Figure 8: Target false positive rates for some of the problems with different number of levels.

8.3 Optimal Parameters

It is worthwhile examining the optimal parameters which are produced as these typically follow a
generic form and can give guidance to practitioners who want to use a cascade without the effort of
producing an optimal one. The optimal detection rate settings are simple and obvious in retrospect.
If the overall target detection rate is x say, then the first level of the cascade should have a target
detection rate of x and all other levels should have a target detection rate of 1.0. Our method always
converged on this solution regardless of the problem, the target detection rate or number of levels
in the cascade. This is clearly optimal since the only situation in which it would not be would be
the case where detecting more positives allows for the rejection of more negatives. But moving any
decision boundary to include more positives will at best not include more negatives.

The target false positive ratio is a more complex situation. Figure 8 shows several examples with
varying length cascades. More informative graphs are shown in Figure 9 which shows the number
of weak classifiers required for each level of the cascade. The message for setting the cascade
parameters is therefore quite simple and intuitive - do as little as possible early in the cascade, and
progressively do more work in later levels of the cascade.

14



OPTIMISING CASCADE CLASSIFIERS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5  10  15  20  25  30

Nu
m

be
r o

f W
ea

k 
Cl

as
sif

ie
rs

Cascade Level

Isolet

(a) Isolet

 0

 20

 40

 60

 80

 100

 120

 140

 0  5  10  15  20  25  30

Nu
m

be
r o

f W
ea

k 
Cl

as
sif

ie
rs

Cascade Level

Musk

(b) Musk

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5  10  15  20  25  30

Nu
m

be
r o

f W
ea

k 
Cl

as
sif

ie
rs

Cascade Level

Page Blocks

(c) Page Blocks

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  5  10  15  20  25  30

Nu
m

be
r o

f W
ea

k 
Cl

as
sif

ie
rs

Cascade Level

Face Detection

(d) Face Detection

Figure 9: Target size for each cascade level for some of the problems with different number of
levels.
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Problem Pos. F.P. D.R Tree Est. Actual Opt. Est Cost/
Ratio Target Target Height Speedup Speedup Speedup Act. Cost

statlog sat 0.24 0.03 0.99 3 3.20 2.12± 0.19 1.06 0.24 ± 0.03
splice 0.52 0.03 0.95 3 1.91 1.73± 0.55 1.06 0.89 ± 0.78

spambase 0.61 0.07 0.95 3 1.57 1.58± 0.06 1.05 1.14 ± 0.72
page blocks 0.06 0.03 0.95 2 10.97 4.74± 2.83 1.60 1.75 ± 1.32

musk 0.15 0.02 0.95 3 4.07 4.21± 0.28 1.30 1.22 ± 0.46
letter 0.04 0.01 0.99 3 7.30 6.10± 1.20 1.33 0.73 ± 0.15
isolet 0.04 0.05 0.95 2 7.04 6.17± 1.76 1.46 1.12 ± 0.51

covtype 0.11 0.04 0.99 2 5.68 4.84± 0.67 1.14 0.66 ± 0.28
adult 0.24 0.34 0.95 1 1.87 1.87± 0.13 1.11 2.81 ± 3.17
faces 10−6 0.01 0.8 1 20.4 9.25 2.1 1.0

Table 2: Comparison of estimated and actual speedups obtained by using a cascade classifier. Col-
umn 2 shows the ratio of positive examples in the data, column 3 shows the false positive
rate target, column 4 shows the detection rate target, column 5 the height of the decision
tree which is boosted (the most efficient height for each problem is shown), column 6
shows the speedup which is estimated by the model, column 7 shows the actual speedup
obtained, column 8 shows the estimated speedup obtained by the optimized cascade over a
non-optimized cascade, and column 9 shows the ratio of the estimated cascade cost to the
actual cascade cost. Speedups are shown on test data and the numbers are averaged over 9
cascade training runs with a 50/50 training/test set split.

8.4 Cascade Performance

Table 2 shows speedups for several problems from the repository. In all of these problems, only 5
layer cascades have been used - larger cascades become more useful as the ratio of positive examples
falls close to 0. There are several things to note about the data. The amount of speedup is loosely
correlated with the ratio of positive examples as expected. Significant speedups can be obtained
even when the positive ratio is quite high - from 30-50% for some evenly weighted problems, and
more than double the speed for most problems. The optimization procedure can also produce a
significant cost reduction - again this seems to be loosely correlated with the positive ratio. The
table also shows that the model is less good at estimating actual cost often with large variances
between runs. We believe this is due largely to the sensitivity of the combination of AdaBoost and
decision trees to the training and test sets.

Figure 10 shows an ROC scatter-plot for each of the problems listed above. As can be seen from
the plot, the cascade always returns an ROC point that is to the left and below the corresponding
monolithic classifier (i.e. fewer false positives and fewer detections). This is entirely expected due
to the early reject nature of the cascade.

For the face detection problem, we have also built a useful cascade classifier with 20 layers.
The constraints on the optimization included an overall false positive rate of 10−6 and an overall
detection rate of 0.8. On the CMU/MIT test set using 10 scale levels with window sizes between
25 × 25 pixels and 200 × 200 pixels and a simple mechanism for merging overlapping detections,
we achieved a false positive rate of 5.9 × 10−6 and a detection rate of 0.77, which is reasonably
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close to the initial constraints. Our model also estimates on average 13.6 feature evaluations per
window, where evaluating a classifier with 2 weak classifiers results in 2 feature evaluations. On the
CMU/MIT test set, our classifier performed on average 13.0 feature evaluations per window. Note
that this is slower than the results reported by Viola and Jones (2001, 2004) who report an average
of 8 feature evaluations per window — since we did not have access to their training data or the
particular set of features they used, we cannot do a direct comparison with their method. A naive
cascade with a goal false positive rate of 0.5012 and goal detection rate of 0.9889 for each layer
would require 93.8 feature evaluations per window according to our model.

9. Limitations
Cascade classifiers suffer from the same problems as the underlying monolithic classifier. In par-
ticular, it is possible to choose an overall target false positive rate and detection rate that cannot be
achieved given the current training data and weak learning algorithm. There is no real solution to
this problem — some care must be taken in choosing appropriate overall targets.

The model we use is quite complex and lacks some theoretical justification — why does Equa-
tion 5 seem to hold and why should the parameters be modeled as they are. In many respect our
model is purely empirical and parsimonious. Because the model is empirical, there are inevitable
inaccuracies. Nevertheless, we believe it has shed some light on the problem of cascade optimiza-
tion. In particular, it has given insight into how to set the cascade parameters even if a practitioner
is not prepared to go through the process of optimization. Although the modeling and optimiza-
tion process is complex, we have fully automated it and have released Mathematica source code for
performing the optimization.

10. Conclusion

Our empirical model provides an interesting glimpse into the workings of AdaBoost, but we do not
have a strong theoretical justification for why such a model can be used so effectively. More work
is required on the theoretical aspects hinted at by the model. We are strong advocates of the cascade
architecture and think it would be interesting to apply the method to other learning algorithms such
as support vector machines.

We have introduced a method for optimizing cascade classifiers by empirically modeling the
execution cost of AdaBoost classifiers and have made several contributions to the state of knowledge
on cascade classifiers. We have: shown that cascades can provide effective speedups for non-
rare event problems; provided very strong evidence to support the intuitions of Viola and Jones
(2001, 2004) to do as little work as possible early in the cascade; shown that even naively setting
cascade parameters can provide significant speedups over monolithic classifiers; shown how cascade
parameters can be optimized and that this optimization can provide significant efficiency gains over
naively setting parameters in many cases.
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