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Abstract

In this study we investigate the use of splines and the ICP method (Besl and McKay,

1992) for calculating the transformation parameters for a rigid body undergoing pla-

nar motion parallel to the image plane. We demonstrate the efficacy of the method

by estimating the finite centre of rotation and angle of rotation from lateral flex-

ion/extension radiographs of the lumbar spine. In an in vitro error study, the method

displayed an average error of rotation of 0.44 ± 0.45 degrees, and an average error

in FCR calculation of 7.6 ± 8.5 mm. The method was shown to be superior to that

of Crisco et al. (1995) and Brinckmann et al. (1994) for the tests performed here.

In general we believe the use of splines to represent planar shapes to be superior

to using digitised curves or landmarks for several reasons. First, with appropri-

ate software, splines require less effort to define and are a compact representation,

with most vertebra outlines using less than 30 control points. Second, splines are

inherently sub-pixel representations of curves, even if the control points are lim-

ited to pixel resolutions. Third, there is a well defined method (the ICP algorithm)

for registering shapes represented as splines. Finally, like digitised curves, splines

are able to represent a large class of shapes with little effort, but reduce potential

segmentation errors from two dimensions (parallel and perpendicular to the image

gradient) to just one (parallel to the image gradient). We have developed an ap-

plication for performing all the necessary computations which can be downloaded

from http://www.claritysmart.com.
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Nomenclature

pk kth control point of a spline

n Number of control points in spline

P (u) Parametric form of a spline with spline parameter u

u Spline parameter, 0 ≤ u < n

t Alternative spline parameter, 0 ≤ t < 1, t = u/n

s s = 0.5 - used in definition of spline

FCR Finite centre of rotation

ICP Iterative closest point algorithm

Introduction

Calculating the two-dimensional rigid motion parameters between two dis-

tinct poses is a popular technique for assessing joint function (Petit et al.,

2004; Sakamaki et al., 2002). In two dimensional applications it is typical to

either define feature points (landmarks) on the object of interest (Brinckmann

et al., 1994; Frobin et al., 1996, 2002) or to define feature lines (Quinnell and

Stockdale, 1983; Van Akkerveeken et al., 1979; Bogduk et al., 1995; Stokes

and Frymoyer, 1987). In either case, the points or lines can be placed by an

expert operator or algorithmically by computer as in (Frobin et al., 1996,

2002). However such placement can be subject to errors from either inter-

expert variability or inter-session variability in the case of manual placement,

or by susceptibility to noise in the case of algorithmic placement. In this paper

we focus on the lumbar spine and therefore take the method of Brinckmann

et al. (1994) to be the current state-of-the-art method as this protocol has

been extensively tested (Frobin et al., 1997; Leivseth et al., 1998) and has
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been used by other authors (Muggleton and Allen, 1998; Pfeiffer and Geisel,

2003).

The major disadvantage of algorithmic landmark techniques is that a different

algorithm needs to be defined for each class of shape (Frobin et al., 2002).

Further, any algorithm is liable to suffer from errors due to noise in image

formation and contour extraction - the effects of which are usually mitigated

by least squares techniques (Challis, 2001; Spiegelman and Woo, 1987; Crisco

et al., 1994; Spoor and Veldpaus, 1980; Woltring et al., 1985; Veldpaus et al.,

1988; McCane et al., 2005). Of course, least-squares techniques become more

accurate as the number of (reliably extracted) landmarks increase, but defining

a large set of such points is difficult for human vertebrae (Frobin et al., 1997;

Pfeiffer and Geisel, 2003).

The closest method to the one developed here is the method of Crisco et al.

(1995) which performs registration based on curvature estimates along a digi-

tised curve. Their method is global and does not easily allow for sub-pixel reg-

istration. Further it has not been applied to the problem of estimating motion

parameters in the lumbar vertebrae. We include their method for comparison

with the method described here.

Materials and Methods

In this paper we focus on estimating the planar transformation of a rigid

body where the image plane is parallel to the plane of transformation. We

use the Finite Centre of Rotation (FCR) and angle of rotation to define the

transformation as they are often used for assessing joint function (Bogduk
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et al., 1995; Amevo et al., 1992; Petit et al., 2004). We use the least squares

technique of McCane et al. (2005) to calculate the angle of rotation and the

FCR, which we note is equivalent to the method of Challis (2001).

The shapes to be matched are represented as Catmull-Rom splines (Hearn and

Baker, 1994). These are interpolating splines which can be closely matched to

a large class of smooth shapes. In our application these splines are specified

interactively by a user marking up the vertebral body silhouettes from digital

scans of radiographs of the lumbar spine (in full flexion/extension, see Figure

1). Pedicles and posterior elements are ignored as their appearance on lateral

radiographs can be inconsistent and affected by x-ray dose and resolution.

A Catmull-Rom spline is defined by a set of control points (Hearn and Baker,

1994):

pk = (xk, yk), k = 0, 1, 2, ..., n − 1. (1)

We use closed splines, so pn = p0. A point on the spline is specified by the

parameter 0 ≤ u < n:

P (u) = pk−1(−su3 + 2su2 − su) + pk[(2 − s)u3 + (s − 3)u2 + 1]+

pk+1[(s − 2)u3 + (3 − 2s)u2 + su] + pk+2(su
3 − su2) (2)

where s = 0.5, k = buc the floor of u, and pk are the control points. For lumbar

vertebrae, we have used on the order of 30 control points to adequately describe

the shape.

Splines would typically be defined independently in each image of interest

(in our application in flexion and extension images). It is likely that the two

splines will have slightly different shapes and almost certainly different pa-

rameterisations (i.e. different control points - a problem largely ignored when
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Fig. 1. An example radiograph with several splines.

digitised curves are used). As such, there is no straightforward way of directly

establishing a correspondence between the two splines. In this paper, we use

the well known iterative closest point (ICP) algorithm of (Besl and McKay,

1992). This algorithm is monotonically convergent (i.e. it always converges to

a local minima) and finds the locally best correspondence between the two

contours in a least squares sense. The method has always converged on the

global minimum in our experiments. The algorithm is shown in Figure 2.

The closest_point(P, p) routine calculates the nearest point on a paramet-

ric entity P to the point p which can be found using Newton’s minimisation
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Input: P1, P2: two parametric contours with coincident centroids

N: number of sample points to use (N = 100)

Output: θ: angle of rotation to register contours

θ = 0

while (not converged)

t1 = 0

for i = 0 to N do

p1[i] = P1(t1)

p1 = closest point(P2, p1)

t1 = t1 + 1.0/N

endfor

φ = find best rotation(p1,p2)

P2 = rotate(P2, φ)

θ = θ + φ

endwhile

Fig. 2. The ICP algorithm.

method (Besl and McKay, 1992). Spline centroids are calculated by digitising

the spline to image resolution, summing all points in the digitised spline, and

dividing by the number of points (that is, a numerical estimate of the true

centroid, which can’t be calculated analytically). This method gives the best

estimate of the relative translation between splines in a least-squares sense

(Challis, 2001), if those splines are related by a combination of translation,

rotation, and isotropic scale transformations. Therefore, the method is valid

for closed splines and open splines which terminate at common anatomical

points in both images. The method will not work for open splines without

common termination points, for which partial matching techniques would be
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needed.

Four methods are compared: the ICP method using Catmull-Rom splines

(ICP); the method of Crisco et al. (1995) by extracting the curvature at 100

equally spaced points along the spline (Crisco); the method of Brinckmann

et al. (1994) using ventral and dorsal corner points extracted from the spline

(Brinck Cor.); and the method of Brinckmann et al. (1994) using ventral and

dorsal midpoints (Brinck Mid.). We have performed two experiments. The first

involved an in vitro error study with known angle of rotation and FCR. Two

human vertebrae (L4 and L5) were mounted on polystyrene bases. One of the

vertebrae was then fixed onto a base which had a printed protractor attached

to it. The second was fixed to a transparent sheet which was in turn fixed

to the base at a single fixed point (the FCR) with a metal pin. Radiographs

were taken for six different angular rotations and three different locations of

the FCR resulting in 18 total radiographs. Angles were read off the protractor

as the radiograph was taken (accuracy ±0.1◦) and the metal pin appears on

the radiograph. Figure 3 shows a picture of the experimental setup. The pin

appeared as a line on the radiograph as it was not parallel to the x-ray beam.

The ends of the pin were located to within 1 pixel (0.17 mm), and the FCR

estimated as a fixed ratio along the length of the pin line corresponding to the

ratio of the pin above and below the surface of the base (accuracy ±0.29 mm).

Each radiograph was matched with every other radiograph with the same FCR

position, resulting in 45 flexion/extension pairs to be analysed with angle of

rotation varying from 3 degrees to 15 degrees. The radiographs were digitised

on a consumer grade flat-bed scanner (maximum distortion 0.5mm) at 150

dpi.

The second experiment is an in vivo intra-operator consistency study where
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(a) Angle = 5◦

(b) Angle = −5◦

Fig. 3. Two positions of the vertebrae in the error analysis. The angle is read directly

off the protractor as the radiograph is taken. The metal pin (obscured by a vertebra)

shows up directly on the radiograph).

the FCR and angle of rotation are measured on two different occasions for

the same operator. Thirty radiographs of different patients in full flexion and

extension were used.

Results

In the in vitro error study, the ICP method produced an FCR error of 7.3±8.3

mm and an angle error of 0.44 ± 0.45 degrees (table 1). These results are

9



Measure ICP Crisco Brinck Mid Brinck Cor.

FCR error (mm) 7.3 ± 8.3 11.6 ± 15.5 31.7 ± 64.5 33.4 ± 45.6

angle error (degrees) 0.44 ± 0.45 1.00 ± 0.63 1.48 ± 0.97 2.27 ± 1.57

Table 1

In vitro true error (criterion-related validity). Mean and standard deviation of the

errors for calculating the FCR and the angle of rotation for each of the methods

tested.

Comparison

Angle FCR

Wilcox test F test Wilcox test F test

ICP vs Crisco 5.4 × 10−6 0.017 0.00010 3.1 × 10−5

ICP vs Brinck Mid 1.5 × 10−8 7.3 × 10−7 1.3 × 10−8 p < 2.2 × 10−16

ICP vs Brinck Cor 9.0 × 10−10 6.6 × 10−14 5.1 × 10−11 p < 2.2 × 10−16

Table 2

p-values for in vitro error study statistical tests.

consistent with previous studies (Crisco et al., 1994; Harvey and Hukins, 1998;

Challis, 2001). We used a paired Wilcoxon signed rank test to compare the

errors of the ICP method with each of the other methods, and an F test to

compare variances. With one exception it was found that the new method

was superior in both error and variance to an extremely significant level (p <

0.001). The angle variance of the ICP method was superior to the method of

Crisco et al. (1995) to a significant level only (p = 0.017). Actual p-values are

shown in Table 2.

In the in vivo intra-operator consistency study, the ICP method produced
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Statistic ICP method Crisco Brinck Mid. Brinck Cor.

FCR distance (mm) 12.4 ± 7.4 12.8 ± 8.1 48.0 ± 159.2 15.0 ± 10.4

angle difference (degrees) 1.3 ± 1.1 23.2 ± 54.2 2.3 ± 1.9 2.4 ± 2.0

Table 3

Intra-operator consistence (precision). Mean and standard deviation of the differ-

ences between the FCR and the angle of rotation calculated on two separate occa-

sions. The FCR error is only reported for cases where the angle of rotation is greater

than 5 degrees as it is known to result in large errors for small angles.

an FCR distance (RMS) of 12.4 ± 7.4 mm and an angle difference (RMS) of

1.3 ± 1.1 degrees (table 3). Again we have used the paired Wilcoxon signed

rank test, and F test to compare methods. The ICP method was found to

produce lower angle differences and variances to an extremely significant level

(p < 0.001). The ICP method produced lower FCR distances and variances

to a highly significant level (p < 0.01) in all but one case for which the result

was significant (p < 0.05). Table 4 shows the actual p-values for each of the

tests.

Discussion

We have tested a new method for determining the plane transformation pa-

rameters for the lumbar spine from lateral flexion/extension radiographs. We

have found this method to be superior to previously used methods including

the method of Crisco et al. (1995). However, the method of Crisco et al. (1995)

is a global search method and therefore suffers from potentially large errors

when the shapes exhibit some rotational symmetries - this was the major rea-
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Comparison

Angle FCR

Wilcox test F test Wilcox test F test

ICP vs Crisco 6.0 × 10−15 p < 2.2 × 10−16 0.0020 p < 2.2 × 10−16

ICP vs Brinck Mid 1.3 × 10−7 1.4 × 10−8 0.0022 0.023

ICP vs Brinck Cor 6.2 × 10−9 6.9 × 1010 0.0025 p < 2.2 × 10−16

Table 4

p-values for in vivo consistency study statistical tests. FCR errors for small angles

are included here - some results are not significant when small angles are eliminated

(Crisco FCR Wilcox and FCR F test, and Brinck Cor FCR Wilcox).

son for large errors in the in vivo study. The ICP method on the other hand

is a local search method and hence tends to favour smaller rotations - these

rotations can still be quite large, but are generally limited to the smallest

rotation for which some rotational symmetry appears in the matching shapes

(90◦ in the case of vertebrae). This limitation of the ICP method can be some-

what alleviated by using several starting rotations for the search. Similarly, the

method of Crisco et al. (1995) could be improved in this case by limiting the

size of the rotations or by increasing the number of match points. We have also

shown that the ICP method is superior to the method of Brinckmann et al.

(1994) and has several advantages to that technique. Most notably errors are

reduced by using a large number of matching points which do not have to be

explicitly defined on a per-shape basis.

The main limitation of our study is that we did not explicitly test the method

for errors involving axial rotation or lateral tilt, however the studies by Brinck-

mann et al. (1994); Frobin et al. (1997); Leivseth et al. (1998); Shaffer et al.
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(1990) demonstrate that moderate magnitudes of rotation or tilt (up to 10◦)

introduce only modest amounts of error. This is a potential area for future

investigation, perhaps using a method similar to that of Harvey and Hukins

(1998). We note that this is also a limitation of many other studies investigat-

ing two-dimensional rigid body kinematics (Crisco et al., 1995; Challis, 2001;

Bogduk et al., 1995).
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