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Abstract. We consider the distribution of the length of the longest
subsequence avoiding an arbitrary pattern, π, in a random permu-
tation of length n. The well-studied case of a longest increasing
subsequence corresponds to π = 21. We show that there is some
constant cπ such that as n → ∞ the mean value of this length
is asymptotic to 2

√
cπn and that the distribution of the length is

tightly concentrated around its mean. We observe some apparent
connections between cπ and the Stanley-Wilf limit of the class of
permutations avoiding the pattern π.

Consider an arbitrary pattern avoidance class A. Given any permuta-
tion π define the longest A subsequences of π or LAS(π) to be the set of
those subsequences of π of maximum length, subject to the condition
that their patterns belong to A. Also define LA(π) to be the length
of any sequence in LAS(π). Let I = Av(21) be the class of increasing
permutations.

Apparently Ulam [10] was the first to ask the question:

What can be said about the distribution of values of
LI(Πn) when Πn is a random variable whose value is a
permutation π chosen uniformly at random from among
the elements of Sn?

We intend to address the generalization of this problem to the random
variable LA(Πn) defined in a similar fashion. The history of the analysis
of Ulam’s problem is well documented in [2]. We repeat here a few
details relevant to our investigations of the more general problem.

For convenience let Ln = LI(Πn). Ulam conjectured that for some
constant c

lim
n→∞

ELn√
n

= c.

This conjecture was proven by Hammersley [6] who showed also that
n−1/2Ln → c in probability, and who conjectured that c = 2. This
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further conjecture was proven in part by Logan and Shepp [8] and
simultaneously in whole by Kerov and Veršik [11].

Frieze [5] and Bollobás and Brightwell [4] used martingale methods
to establish tight concentration of Ln about its mean. Subsequently,
Baik, Deift and Johansson [3] obtained complete asymptotic informa-
tion about the distribution of Ln.

Our main theorems are analogs of the results of Hammersley and Frieze
for the more general case of LA(Πn). For the first of these we need to
impose a mild additional restriction on A. The proofs for the general
case are then essentially identical to the originals.

Theorem 1. Let A be an infinite and proper pattern avoidance class
which is either sum-closed or difference-closed. There exists a constant
1 ≤ cA < ∞ such that

(1) lim
n→∞

ELA(Πn)√
n

= 2
√

cA.

Theorem 2. Let A be a proper pattern class. For α > 1/3 and β <
min(α, 3α− 1)

(2) Pr (|LA(Πn)− ELA(Πn)| ≥ nα) < exp(−nβ).

The Marcus-Tardos theorem is a key ingredient in the proof of Theo-
rems 1 and 2. We will now present observations which provide some
evidence for a connection between the constants cA and

sA := lim sup
n→∞

|Sn ∩ A|1/n .

Conjecture 1. For any proper pattern avoidance class A, the limits
superior definining cA and sA are in fact limits, and cA = sA.

The evidence for this conjecture is somewhat fragmentary at this point.
It is supported by the following results.

Proposition 3. For each positive integer k, the classes

Av(k(k − 1)(k − 2) · · · 21) and Av(123 · · · k)

satisfy Conjecture 1.

Proposition 4. Let A and B be two pattern avoidance classes which
satisfy Conjecture 1. Then their union, direct sum and juxtaposition
also satisfy Conjecture 1. If, additionally, A ∩ B is a finite class then
their merge also satisfies Conjecture 1.
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The results of the preceding proposition apply in part to the weaker
version of Conjecture 1 which only asserts the equality of two limits
superior.

Let A be any pattern avoidance class and define Rot(A) to be the set
of permutations obtained by taking all the cyclic rotations of elements
of A. It is easily verified that Rot(A) is also a pattern avoidance class.

Proposition 5. If A satisfies Conjecture 1 then so does Rot(A).

Again, the “weak” form of this proposition is valid.

We have no significant evidence in favour of Conjecture 1 based on an
exact computation of cA for any classes other than those which can be
produced from the classes Av(k(k−1) · · · 321) or Av(123 · · · (m−1)m)
by the constructions described in the previous section. An obvious
starting point for the investigation of Conjecture 1 would be the col-
lection of pattern avoidance classes whose basis consists entirely of
permutations of length 3. These classes, as a group, were first analysed
by Simion and Schmidt [9]. Starting from the “easy” end we note
that almost all such classes having three or more basis elements sat-
isfy Conjecture 1 as a consequence of Propositions 4 and 5 or trivial
modifications of them. The exceptional cases are the classes whose
growth is governed by the Fibonacci numbers, and we consider these
below. Also, most of the cases having two basis elements are covered
by Proposition 4. Up to symmetry there are two exceptions which we
consider below.

• The layered permutations, L = Av(231, 312), consisting of all
permutations of the form D1 ⊕ D2 ⊕ · · · ⊕ Dk where each of
D1 through Dk is a descending permutation. The number of
permutations of length n in L is 2n−1 and so sL = 2.

• The subclass L(2) = Av(231, 312, 321) of L formed by requiring
that each Di contain at most two elements. The number of
permutations of length n in L(2) is equal to the nth Fibonacci
number, so sL(2) = (1 +

√
5)/2. Kaiser and Klazar [7] proved

that L(2) is the smallest pattern avoidance class whose Stanley-
Wilf limit is strictly greater than 1.

• The class C = Av(321, 312) whose elements are those permuta-
tions that can be written as direct sums C1⊕C2⊕· · ·⊕Ck where
each Ci is of the form 234 · · ·n 1 for some n > 1, or simply 1.

Results in [1] give dynamic programming algorithms for solving the
longest subsequence problem for both L and L(2) whose complexity
is O(n2 log n) where n is the length of the input permutation. We
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Length µ σ ∼ cL(2)

1× 104 239.3 4.5 1.431
2× 104 340.7 5.2 1.451
4× 104 484.7 6.1 1.468
8× 104 688.4 6.4 1.481
16× 104 978.1 7.1 1.495
32× 104 1386.8 8.3 1.503
64× 104 1965.3 9.3 1.510
128× 104 2785.3 10.2 1.515

Table 1. Summary data for the mean, µ, and standard
deviation σ of the length of the longest L(2) subsequences
in a sample of 1000 random permutations together with
corresponding estimates of cL(2).

have been able to improve the latter algorithm, based on a tableau
style method to result in a complexity of O(n log n). The algorithm
provided in [1] for C has worst case complexity O(n3 log n) though in
practice with some minor optimisations it performs significantly bet-
ter than this on random permutations. All three algorithms were im-
plemented and a long period random number generator was used to
provide experimental data concerning the values cL, cL(2), and cC.

For L(2) we present data based on permutations of length 2k × 104 for
0 ≤ k ≤ 7. For each value of k, 1000 random permutations of that
length were generated and the length of the longest L(2) subsequences
was computed. Table 1 shows the mean, sample standard deviation,
and resulting estimates of cL(2) based on these simulations. We would
be forced to classify a person who believed in the truth of Conjecture 1
based on this data for L(2) as an optimist. If the estimates are indeed
converging to sL(2) then they are not yet within 6% of their final limit
at n = 128 × 104. By contrast, for this value of n the estimate for cI
(whose actual value is 1) is approximately 0.985.

Because of the slower running time and increased space requirements
required by the algorithm for finding longest layered subsequences data
for L is based on permutations of length 2k × 102 for 0 ≤ k ≤ 7. As
for L(2), 1000 random permutations of each length were analysed and
the results are presented in Table 2. The data for this class do not
require as much optimism as the L(2) data to be viewed as support for
Conjecture 1.
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Length µ σ ∼ cL
1× 102 23.8 1.8 1.418
2× 102 34.8 2.2 1.517
4× 102 50.6 2.5 1.602
8× 102 73.4 3.0 1.682
16× 102 105.2 3.3 1.730
32× 102 150.7 4.0 1.774
64× 102 215.9 4.4 1.821
128× 102 307.5 4.9 1.847

Table 2. Summary data for the mean, µ, and standard
deviation σ of the length of the longest L subsequences
in a sample of 1000 random permutations together with
corresponding estimates of cL.

Length µ σ ∼ cL
1× 102 22.9 2.0 1.306
2× 102 33.5 2.3 1.406
4× 102 48.5 2.4 1.470
8× 102 70.5 3.1 1.555
16× 102 101.2 3.3 1.601
32× 102 145.2 3.9 1.647

Table 3. Summary data for the mean, µ, and standard
deviation σ of the length of the longest C subsequences
in a sample of 1000 random permutations together with
corresponding estimates of cC.

Finally, the data for the class C presented in Table 3 is even more
limited, but again it seems to provide qualified support for Conjecture
1.

Notable by its omission from our discussion is the class Av(312). This
class has Stanley-Wilf limit 4. A polynomial time algorithm for the
longest subsequence problem based on this class is given in [1] but
its complexity on permutations of length n is O(n5) which makes it
impractical for experiments of the size required to produce even vaguely
convincing evidence. The goal of producing such evidence would seem
to require finding, even on an ad hoc basis some collection of classes for
which the longest subsequence problem can be solved algorithmically
in reasonable time (basically, at worst quadratic) and/or developing
better algorithms for classes such as Av(312).
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