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1 Introduction

A permutation π is said to be a subpermutation of a permutation σ if σ has a
subsequence isomorphic to π (that is, its terms are ordered relatively the same
as the terms of π). For example 312 is a subpermutation of 25134 because of
the subsequence 513 (or 514 or 534). On the other hand 321 is not a subpermu-
tation of 25134 because there is no three element subsequence of 25134 in which
the three elements occur in decreasing order. Consequently 25134 is said to
involve 312 but to avoid 321. If Π is a set of permutations then Av(Π) denotes
the set of all permutations which avoid every permutation in Π. Such sets of
permutations are called pattern classes and have given rise to many enumerative
results. Typically, given Π, one is interested in determining the number cn(Π)
of permutations of each length n in the pattern class Av(Π). For obvious rea-
sons we shall assume throughout that Π is non empty. When explicitly listing
the elements of some set Π as an argument we will generally omit braces, thus
writing cn(123, 312) rather than cn({123, 312}).
The sequences cn(Π) can be studied from several points of view. We might
wish to discover an exact formula for cn(Π), to find bounds on its growth as a
function of n, or to determine the ordinary generating function∑

σ∈Av(Π)

x|σ|.

Recently Marcus and Tardos [8] resolved affirmatively the long-standing open
question of whether cn(Π) was always exponentially bounded. In part because
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of this result, attention has turned to enumerative questions of finer detail, and
this paper addresses one such question.

We shall be concerned with pattern classes of polynomial growth; in other words,
classes Av(Π) for which there exists a bound of the form

cn(Π) ≤ And

for some constants A, d. Such classes were studied by Kaiser and Klazar in
[7]; they proved that, in such a class, cn(Π), as a function of n, was actually
equal to some polynomial for all sufficiently large n and that this polynomial
had a particular form. Kaiser and Klazar also proved that classes Av(Π) whose
growth was not polynomial have cn(Π) ≥ τn where τ is the golden ratio.

Examples of classes of polynomial growth have also appeared many times in the
literature. For example, in an early paper [10], on pattern class enumeration,
Simion and Schmidt proved that cn(132, 321) = n(n − 1)/2 + 1. Some more
difficult enumerations were carried out by West [11] in his work on classes of
the form Av(α, β) where α is a permutation of length three, and β one of length
four; he showed that 4 of the 18 essentially different such classes have polynomial
enumerations.

In the next section we investigate the necessary and sufficient conditions on Π
for Av(Π) to have polynomial growth. These conditions (Theorem 1) turn out
to be so simple that it is virtually trivial to test whether Av(Π) has polynomial
growth. Some parts of this result are already implicit in [7] but our approach
is somewhat different. In particular we focus on the structural characteristics
of the elements of such permutation classes and are able to provide a uniform
argument leading to the desired conditions. By themselves the conditions tell us
little about an actual polynomial that gives cn(Π) (for sufficiently large n) and
so, in Section 3, we go on to give more precise results when |Π| ≤ 3. Huczynska
and Vatter have also recently provided in [6] an alternative simplification of the
proof of the result of Kaiser and Klazar, establishing the dichotomy between
classes of polynomial growth and those whose growth exceeds the growth of the
Fibonacci numbers.

If Π = {α} there is nothing to say beyond what is obvious; cn(α) has polynomial
growth only if |α| ≤ 2. In these cases:

cn(1) = 0 for all n ≥ 1
cn(12) = cn(21) = 1 for all n ≥ 1

If Π has two or three elements the conditions for polynomial growth are more
complex. In the latter case the classes Av(Π) of polynomial growth are suffi-
ciently numerous that we have only used Theorem 1 to list the various sets Π
(see Theorem 4); it would not be difficult in most cases to give the complete
enumerations. However, in the former case, we obtain a characterisation (The-
orem 3) of polynomial growth classes which are more demanding to analyse. In
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Section 4 we give some bounds on the degrees of the polynomials that arise in
this case.

In order to simplify the exposition it will be useful to introduce a few further
pieces of definition and notation. Two sequences a1, a2, . . . , an and b1, b2, . . . , bn

of distinct elements from (possibly different) totally ordered sets are order iso-
morphic (or simply equivalent) if, for all 1 ≤ i, j ≤ n, ai < aj if and only if
bi < bj . Thus, a permutation π is involved in a permutation σ exactly when,
considered as a sequence, it is equivalent to some subsequence of σ. Further,
every finite sequence of distinct elements from a totally ordered set is equivalent
to exactly one permutation, called its pattern. If a pattern class X = Av(Π) is of
polynomial growth, then we define degree(X) to be the degree of the polynomial
p for which cn(Π) = p(n) for all sufficiently large n.

2 Conditions for polynomial growth

The main result of this section is a necessary and sufficient condition that Av(Π)
has polynomial growth. Informally the condition is that among the permuta-
tions of Π we must find permutations of all the 10 types shown in Figure 1.
Clearly, testing this condition is very easy.

 

or 

or 

1. 2. 3. 4. 

5. 6. 7. 8. 

9. 10. 

Figure 1: 10 types of permutation

We shall develop some terminology and notation to state this condition more
formally, and to justify it. Let ε = (e1, e2, . . . , er) be any sequence whose terms
are +1 or −1. Then the pattern class W (ε) consists of all permutations π that
have a segmentation

π = σ1σ2 · · ·σr

where σi is increasing if ei = +1 and decreasing if ei = −1. These pattern
classes are the ‘W ’-classes of [3, 1] where they were used to study partial well-
order and regularity questions. We will be particularly interested in the four
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W -classes formed from sequences ε of length 2 and their inverses, which form
the first eight types in Figure 1. We will use a somewhat more compact notation
for these classes:

W+− = W (+1,−1) W−1
−− = W (−1,−1)−1 etc.

The last two types in Figure 1 are not related to W -classes and we call them
L2 and LR

2 respectively since the first consists of permutations with increasing
layers which are either singletons or decreasing doubletons, and the second is
the reverse of this class. We can now state our condition formally:

Theorem 1 A pattern class Av(Π) has polynomial growth if and only if every
class in the list

W++, W+−, W−+, W−−
W−1

++, W−1
+−, W−1

−+, W−1
−−

L2, LR
2

has non-empty intersection with Π.

The method of proof shows that every class of polynomial growth is a subclass
of a polynomial growth class P (π, µ) defined by a permutation π (of degree m
say) and a sequence µ of m associated signs ±1. The permutations in the class
P (π, µ) are obtained from π by replacing any term associated with +1 by an
increasing consecutive segment (possibly empty), and the terms associated with
−1 by a decreasing consecutive segment. Therefore any permutation in the class
can be specified (though not generally uniquely) by the vector of lengths of these
segments. A subclass then corresponds to an ideal in the partially ordered set
of such vectors ordered by dominance.

Furthermore the proof shows also that:

Corollary 2 Every pattern class of polynomial growth is finitely based.

3 Two or three restrictions

Theorem 1 does not give any hint about what the degree of a class given as
Av(Π) is. In this section we consider the implications of Theorem 1 for Π when
|Π| = 2 or 3. To eliminate trivialities we will assume throughout this section
that each permutation in Π has length at least three. The methods of proof are
patient enumerations of cases and we omit them in this abstract.

Theorem 3 Let X = Av(α, β) have polynomial growth. Then, up to symmetry
and exchange of α with β, we have one of the following:

1. α is increasing and β is decreasing,
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2. α is increasing and β is almost decreasing in the sense that β ∈ LR
2 with

exactly one layer of size 2.

We find it illuminating to contrast this result with the Erdös-Szekeres theorem
which can be recast in the form: a pattern class Av(α, β) is finite if and only if
one of α and β is increasing and the other is decreasing.

Theorem 4 Let Av(α, β, γ) have polynomial growth. Then, up to symmetry
and exchange of α with β, we have one of the following:

1. α = 213, and

(a) 3412 � β ∈ LR
2 and γ = 12 · · · k n(n− 1) · · · (k + 1) for some k, or

(b) β = m(m−1) · · · (j+2) j(j+1) (j−1)(j−2) · · · 1 and γ = 12 · · · k n(n−
1) · · · (k + 1) for some j, k, or

(c) β = m(m− 1) · · · 312 and γ ∈ W+−.

2. α is increasing, 3412 � β ∈ LR
2 and γ ∈ W−− ∩ W−1

−−, (or Av(α, β) has
polynomial growth).

3. α = 21345 · · · s, and

(a) 3412 � β ∈ LR
2 and γ = 1n(n− 1) · · · 2, or

(b) β = m(m−1) · · · (j+2) j(j+1) (j−1)(j−2) · · · 1 and γ = 12 · · · k n(n−
1) · · · (k + 1) for some j, k, or

(c) β = m(m− 1) · · · 312 and γ ∈ W+−.

4 Enumeration when there are two restrictions

The theorems above provide no information on how to find the degrees of the
polynomials that enumerate classes of polynomial growth. We make a start on
this problem for classes with two restrictions only and throughout this section
we shall consider classes Av(α, β) defined by two restrictions of the form given
in Theorem 3. Specifically, for some positive integer r and non-negative integers
p and q:

1. α = αr = 12 · · · r, and

2. β = βpq = λ (q + 1) (q + 2) µ where |λ| = p, |µ| = q, λ is decreasing with
consecutive terms all of which are greater than q + 2, and µ is decreasing
with consecutive terms, all of which are less than q + 1. Define s = |β| =
p + q + 2.

We shall give upper and lower bounds on degree(Av(αr, βpq)) for arbitrary r, p, q,
and some tighter bounds in small special cases. Our results are as follows:
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Theorem 5

(r−1)s−2)−1 ≤ degree(Av(αr, βpq)) ≤
{

(r − 1)2(s− 2)− r if p > 0 and q > 0,
(r − 1)2(s− 2)− 1 if p = 0 or q = 0.

Theorem 6 The pattern class Av(12 · · · r, 231) is enumerated by a polynomial
of degree 2r − 3 with leading coefficient cat(r − 2).

Theorem 7 If p > 0 and q > 0 then degree(Av(123, βpq)) = 2s − 3. If either
p = 0 or q = 0, degree(Av(123, βpq)) = 2s− 4.
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