Tree-like permutations

Mireille Bousquet-Mélou (joint work with Steven Butler)

Given a permutation $\pi \in S_n$, construct a graph G_{π} on the vertex set $\{1, 2, \ldots, n\}$ by joining *i* to *j* if (i) i < j and $\pi(i) < \pi(j)$ and (ii) there is no *k* such that i < k < j and $\pi(i) < \pi(k) < \pi(j)$. We say that π is forest-like if G_{π} is a forest. We first characterize forest-like permutations in terms of pattern avoidance, and then by a certain linear map being onto. Thanks to recent results of Woo and Yong, this shows that forest-like permutations characterize Schubert varieties which are locally factorial. Thus forest-like permutations generalize smooth permutations (corresponding to smooth Schubert varieties).

We compute the generating function of forest-like permutations. As in the smooth case, it turns out to be algebraic. We then adapt our method to count permutations for which G_{π} is a tree, or a path, and recover the known generating function of smooth permutations.