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School of Mathematics and Statistics
University of St Andrews
St Andrews, Fife, Scotland

{robertb, sophieh, nik, vince}@mcs.st-and.ac.uk
http://turnbull.mcs.st-and.ac.uk/~{robertb, sophieh, nik, vince}

An interval in the permutation π is a set of contiguous indices I = [a, b] such that the
set of values π(I) = {π(i) : i ∈ I} also forms an interval of natural numbers. Every
permutation π of [n] = {1, 2, . . . , n} has intervals of size 0, 1, and n; π is said to be simple
if it has no other intervals. The series of papers [3, 4, 5] harnesses simple permutations to
answer three related, but very different, questions.

Algebraic generating functions for sets of permutations.
Substitution decompositions (known in other contexts as modular decompositions,

disjunctive decompositions and X-joins) have proved to be a useful technique in a wide
range of settings, ranging from game theory to combinatorial optimisation, see Möhring
[7] or Möhring and Radermacher [8]. Although substitution decompositions are most of-
ten applied to algorithmic problems, in the study of permutation classes1 they are applied
to enumeration questions.

Albert and Atkinson [1] were the first to establish the link between simple permuta-
tions and the enumeration of permutation classes; they proved that every permutation
class with only finitely many simple permutations has an algebraic generating function.
In [3] we generalise their theorem to “finite query-complete sets of properties.” Upon
specialisation, this yields the following result.

Theorem 1. In a permutation class C with only finitely many simple permutations, the following
sequences have algebraic generating functions:

• the number of permutations in Cn,

• the number of alternating permutations in Cn,
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1The permutation π is said to contain the permutation σ if π has a subsequence that is order isomorphic

to σ. This pattern-containment relation is a partial order on permutations. We refer to downsets of permu-
tations under this order as permutation classes. In other words, if C is a permutation class, π ∈ C, and σ ≤ π,
then σ ∈ C. We denote by Cn the set C∩Sn, i.e. those permutations in C of length n, and we refer to

∑
|Cn|x

n

as the generating function for C.
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• the number of even permutations in Cn,

• the number of Dumont permutations in Cn,

• the number of permutations in Cn avoiding any finite set of blocked, barred, or boxed permu-
tations, and

• the number of involutions in Cn.

Moreover, these conditions can be combined in any (finite) manner desired.

A decomposition theorem with enumerative consequences.
In [4] we prove that long simple permutations must contain two almost disjoint simple

subsequences. Formally:

Theorem 2. There is a function g(k) such that every simple permutation of length at least g(k)
contains two simple subsequences, each of length at least k, which share at most two entries in
common.

Theorem 2 is motivated by a number of enumerative results for classes with only
finitely many simple permutations. As we have already seen, such classes have algebraic
generating functions. One class with only finitely many simple permutations is Av(132).
Theorems 1 and 2 can be used to give a short proof of the following result.

Theorem 3 (Bóna [2]; Mansour and Vainshtein [6]). For every fixed r, the class of all permu-
tations containing at most r copies of 132 has an algebraic generating function

Proof of Theorem 3 via Theorems 1 and 2. We wish to show that only finitely many simple
permutations contain at most r copies of 132, or in other words, that there is a function
h(r) so that every simple permutation of length at least h(r) contains more than r copies of
132. We have observed already that we may take h(0) = 3. We now proceed by induction,
setting h(r) = g(h(br/2c)), where f is the function from Theorem 2. By that theorem,
every simple permutation π of length at least h(r) contains two simple subsequences of
length at least h(br/2c). By induction each of these simple subsequences contains more
than br/2c copies of 132. Moreover, because these simple susbequences share at most two
entries in common, their copies of 132 are distinct, and thus π contains more than r copies
of 132, as desired.

In fact, our proof gives a stronger result, that every permutation class whose members
contain a bounded number of copies of 132 has an algebraic generating function, whereas
Theorem 3 concerns only the entire class of permutations with at most r copies of 132. Ad-
ditionally, there is of course nothing special about 132. Denote by Av(β≤r1

1
, β≤r2

2
, . . . , β≤rk

k
)

the class of permutations that have at most r1 copies of β1, at most r2 copies of β2, and so
on. From this, we obtain the following result.

Corollary 4. If the class Av(β1, β2, . . . , βk) contains only finitely many simple permutations then
for all choices of nonnegative integers r1, r2, . . . , and rk, the class Av(β≤r1

1
, β≤r2

2
, . . . , β≤rk

k
) also

contains only finitely many simple permutations.
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The largest permutation class whose only simple permutations are 1, 12 and 21 is the
class of seperable permutations, Av(2413, 3142). Thus as an example of Corollary 4, we have
the following result.

Corollary 5. For all r and s, every subclass of Av(2413≤r, 3142≤s) contains only finitely many
simple permutations and thus has an algebraic generating function.

Decidability and unavoidable structures.
We have already seen that being able to tell whether a given permutation class has

finitely many simple permutations or not is important for enumeration, and so it is natu-
ral to ask whether this property of a class is decidable, and, if so, how to determine this
property. We answer this in [5].

Theorem 6. It is decidable whether a finitely based permutation class contains only finitely many
simple permutations.

The proof of this result is constructive, so can be used directly to construct an algo-
rithm answering this question for any specified permutation class.

We also prove in [5] an unavoidable structure result about simple permutations, namely:

Theorem 7. Every sufficiently long simple permutation contains an “alternation” or “oscilla-
tion” of length k.
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