
ON SOME PROPERTIES OF PERMUTATION TABLEAUX

ALEXANDER BURSTEIN

Abstract. We consider the relation between various permutation statistics and properties of permutation
tableaux. We answer some of the questions of Steingŕımsson and Williams [9], in particular, on the distri-
bution of the bistatistic of numbers of rows and essential ones in permutation tableaux. We also consider
and enumerate sets of permutation tableaux related to some pattern restrictions on permutations.

1. Introduction

Permutation tableaux are a particular class of L-diagrams that were studied by Postnikov [7] and enu-
merated by Williams [10]. They are defined as follows. Given a partition of λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) of
an integer m =

∑
i λi, its Young diagram Yλ of shape λ is a left-justified diagram of m boxes, with λi boxes

in row i.
A permutation tableau T k

n , which we will also call a 1-hinge tableau, is a partition λ whose Young diagram
Yλ is contained in a k × (n − k) rectangle aligned with its top and left edges, together with a filling of the
cells of Yλ with 0s and 1s that satisfies the following properties:

(column): Each column of the rectangle contains at least one 1.
(1-hinge): A cell in Yλ with a 1 above it in the same column and a 1 left of it in the same row must

contain a 1.

The filling satisfying the column and hinge properties is called valid. The 1s in T k
n that are topmost in

their columns or leftmost in their rows are called essential, and the remaining 1s, i.e. those that are forced by
the 1-hinge property, are called induced. Note that the column property implies that Yλ must have exactly
n− k columns and at least k rows. Note also that some rows of T k

n (as opposed to columns) may contain all
zeros. Removing the hinge requirement yields the definition of L-diagram [7].

Alternatively, a permutation tableau T k
n may be thought of as a filling of k × (n − k) rectangle with 0s,

1s and 2s such that the cells inside Yλ are filled with 0s and 1s so as to satisfy the column and 1-hinge
properties, and the cells outside Yλ are filled with 2s.

Properties of permutation tableaux were studied by Steingŕımsson and Williams [9]. They gave a simpler
description of a map described by Postnikov [8] that takes permutation tableaux contained in a k × (n− k)
rectangle to permutations in Sn with k weak excedances, and proved that this map Φ is a bijection that also
preserves many other statistics. The bijection Φ will be described in the next section.

One of the conjectures made in [9, Section 7] is that the distribution of permutation tableaux according
to the number of essential 1s is equal to that for number of cycles in permutations, i.e. it is given by the
signless Stirling numbers of the first kind. Moreover, [9] conjectured that the joint distribution of tableaux
according to the number of rows and the number of essential 1s equals that of permutations according to the
number of weak excedances and the number of cycles of a permutation, when written in standard cycle form
(which is the same distribution as that of permutations according to descents and left-to-right-minima). In
this paper we will give a simple natural bijection on L-tableaux that induces the conjectured bijection above
and preserves several other statistics.

Another bijection Ψ on Sn defined in [9] translates certain statistics on permutations corresponding to
entries of their permutation tableaux (determined by Φ) into certain linear combinations of generalized
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permutation patterns. In particular, Ψ maps permutations avoiding generalized pattern 2-31 to permutation
tableaux with exactly one 1 in each column. Since the number of permutations in Sn avoiding 2-31 is Cn,
the nth Catalan number, we give a simple description of permutations whose tableau has a single 1 in each
column in terms of noncrossing partitions.

Finally, we describe the properties of the tableaux of permutations restricted by some 3-letter patterns
and enumerate those of them that have the maximal number of essential 1s.

2. Permutations and permutation tableaux

Here we briefly describe a bijection Φ from [9]. We also give a different proof that Φ is a bijection,
essentially recovering the tableaux from the corresponding permutation by reconstructing the columns of
the tableau from left to right (or, similarly, rows from top to bottom), as opposed to right-to-left column
construction in [9] (or a similar bottom-to-top row construction).

Given a permutation tableau T k
n , its diagram D(T k

n ) is defined as follows. The southeast border of
partition λ gives a path P = (Pi)n

i=1 of length n from the northeast corner of the k × (n − k) rectangle
containing λ to the southwestern corner of that rectangle. Label each step Pi in P with i, for i ∈ [n] (where
[n] = {1, 2, . . . , n}). Now, given an edge Pi, also label with i the edge Qi on the opposite end of the row (if
Pi is vertical) or column (if Pi is horizontal) containing the edge Pi. Replace each 1 in T k

n with a vertex and
delete all 0s. From each vertex draw edges east and south either to the closest vertices in the same row and
the same column or to the labels i of some edge Pi in P . The resulting picture is the diagram D(T k

n ). It is
also convenient to consider D(T k

n ) together with the edges from the labels i of edges Qi on the northwestern
boundary of T k

n to the closest (leftmost) vertex in the same row (if Qi is vertical) or the closest (rightmost)
vertex in the same column (if Qi is horizontal). We will denote the resulting diagram D′(T k

n ) and call it the
expanded diagram of T k

n . It is also convenient to think of edge labels i ∈ [n] as labeling a row or a column
between Pi and Qi, and label each cell in the tableau by the ordered pair of its row and column labels.

Given a tableau T k
n as above, the permutation π = Φ(T k

n ) as defined as follows. For each i ∈ {1, . . . , n},
consider a zigzag path in D′(T k

n ) that starts at Qi (going south or east depending on whether Qi is horizontal
or vertical) and switchings direction between south and east at every vertex it encounters. If that path
terminates at Pj , then we set π(i) = j. Alternatively, in D(T k

n ) we replace the first edge of the path starting
from Qi by an edge north or west from Pi to the vertex in row or column i that is farthest from Pi (and
closest to Qi).

It is shown in [9] that Φ is a bijection, π(i) ≥ i if Pi is vertical and π(i) < i if Pi is horizontal, hence
π = Φ(T k

n ) has k weak excedances (positions i such that π(i) ≥ i) and n − k deficiencies (positions i such
that π(i) < i). In fact, i is a fixed point of π (i.e. π(i) = i) if and only if the row of T k

n labeled i does not
contain a 1. We will refer to Φ as the standard bijection from permutations tableaux to permutation and
refer to Φ(T ) as the permutation of T and to Φ−1(π) as the tableau of π.

In other words, π is a derangement if and only if every row of T = Φ−1(π) also must contain a 1. Therefore,
in this we may reflect the tableau T and obtain another tableau ref(T ) with the same properties. Moreover,
the each southeast path Qi(T ) → Pπ(i)(T ) is thus reflected onto a southeast path Qn+1−i(ref(T )) →
Pn+1−π(i)(ref(T )). Thus, if π = Φ(T ) and σ = Φ(ref(T )), then σ(n + 1− i) = n + 1−π(i) for all i ∈ [n], i.e.
σ is the reversal of the complement of π. This answers Open Problem 5 of [9].

Before proceeding further we will introduce a bit of terminology.

Definition 2.1. If π(i) ≥ i is a weak excedance, we will call π(i) a weak excedance top (wex top) of π, and
call i a weak excedance bottom (wex bottom) of π. If π(i) < i, we will call π(i) a non-weak-excedance bottom
(nonwex bottom) of π, and call i a non-weak-excedance top (nonwex top) of π.

We will now describe a way to recover T k
n from π = Φ(T k

n ) ∈ Sn starting from the leftmost column. Let
m be the largest position of a non-fixed point in π. Then π(m) < m, and π(i) = i for all i > m. Since it is
trivial to recover the edges Pi for i > m, we may assume that without loss of generality that m = n (so Pn

is a horizontal edge).
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Theorem 2.2. Assume that π ∈ Sn is such that π(n) < n, and let T = Φ−1(π). Suppose that the dots in
the leftmost column of T are in rows labeled i1 < i2 < · · · < ir. Furthermore, let T ′ be the tableau obtained
by removing the leftmost column of T and replacing Pn with a vertical edge (so that n becomes a fixed point),
and let π′ = Φ(T ′). Then π = π′ ◦ (i1 i2 . . . ir n), π(n) < π(i1) < . . . π(ir) and π(i1) < . . . π(ir) are the
successive non-fixed-point left-to-right maxima of the subsequence of π consisting of values greater than π(n).

Proof. For 1 ≤ j < r, the first three steps of the southeast path from Qij
to Pπ(ij) are east from Qij

to cell
(ij , n), then south to (ij+1, n), then east from (ij+1, n). Thus, π(ij) = π′(ij+1). Similarly, the path starting
from Qir

goes east to (ir, n), then south to Pn, so π(ir) = n = π′(n). Likewise, the path from Qn starts
south to (i1, n), then turns east, so π(n) = π′(i1). Thus, π = π′ ◦ (i1 i2 . . . ir n) as claimed.

Note that paths p(ij) : ij → π(ij) and p(ij+1) : ij+1 → π(ij+1) meet at a vertex in cell (ij+1, n), where
p(ij) enters it traveling south and leaves east while p(ij+1) enters it traveling east and leaves south. Hence,
we can see by induction that at each row p(ij+1) is to the east of p(ij) and at each column p(ij) is to the
south of p(ij+1), so if p(ij) and p(ij+1) meet again at a cell it must contain an induced 1, so they cannot
cross. It follows from that π(ij) < π(ij+1) for all j < r, and similarly that π(n) < π(i1).

Now let l ∈ [n] be a row label such that ij−1 < l < ij (if j = 1, we simply let l < i1). Then the path from
Ql starts east and either continues to Pl or first turns south at a cell (l,m) for some m < n. Since (l, m) (if
it exists) is northeast of (ij+1, n), the same argument as before applies to show that π(ij) > π(l). Therefore,
π(ij+1) is the leftmost value to the right of π(ij) that is greater than π(ij), so the theorem follows. ¤

Note that largest entry n in the (increasing) cycle above gives the label of the leftmost column, while the
remaining entries give the labels of the rows containing dots in that column. Iterating the operation yields
all the cells in T containing dots. The largest elements in cycles are column labels, the rest are row labels.

Example 2.3. Let π = 65187243. Then we have
i 1 2 3 4 5 6 7 8 cycle
π 6 5 1 8 7 2 4 3 (148)
π′ 3 5 1 6 7 2 4 8 (2457)
π′′ 3 4 1 5 6 2 7 8 (12456)
π′′′ 2 3 1 4 5 6 7 8 (123)
e 1 2 3 4 5 6 7 8

T =

• • •
• • •

• • •
• •

so π = (123)(12456)(2457)(148), and the path P (π) =
(

1 2 3 4 5 6 7 8
v v h v v h h h

)
, where v and h denote

the vertical and horizontal edges, respectively, so T = Φ−1(π) has dots in cells labeled (1, 3), (2, 3), (1, 6),
(2, 6), (4, 6), (5, 6), (2, 7), (4, 7), (5, 7), (1, 8), (4, 8). Note that row labels (here, 1, 2, 4, 5) increase from top
to bottom, while column labels (here, 3, 6, 7, 8) increase from right to left.

Remark 2.4. Note that the column rule implies that there are no 1-cycles. Likewise, the 1-hinge rule implies
that if a cycle c in the product as above contains an element i, and another cycle c′ to its left contains
elements j1, j2 such that j1 < i < j2, then c′ also contains i.

Definition 2.5. We call the (unique) representation of a permutation π as a product of increasing cycles
subject to the conditions in Remark 2.4 the column decomposition of π.

Likewise, it is easy to see that we can determine T by rows from top to bottom by decomposing T as
a product of decreasing cycles. In this case, however, we may have 1-cycles, which will correspond to rows
without dots. Here, at each step, we will need to find positions of the successive non-fixed-point right-to-left
minima of the subsequence of π consisting of values smaller than π(s), where s is the position of the leftmost
non-fixed point. After arriving at the identity permutation, we add the remaining elements as fixed points.

Example 2.6. Given π = 65187243, we obtain similarly to Example 2.3 that π = (765)(8764)(7632)(8631).

Remark 2.7. As in Remark 2.4, note that the 1-hinge rule implies that if an element i occurs in some cycle
c in the product as above, and another cycle c′ to the left of c contains elements j1, j2 such that j1 > i > j2,
then c′ also contains i.
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Definition 2.8. We call the (unique) representation of a permutation π as a product of decreasing cycles
subject to the conditions in Remark 2.7 the row decomposition of π.

3. Tableaux of restricted permutations

Now we need to define the notion of a pattern. A (classical) permutation pattern is an order-isomorphism
type of a sequence of totally ordered letters. Such a sequence is then referred to as an occurrence or instance
of that pattern. For example, σ = 214653 contains instances of pattern π = 2-3-1 at subsequences 463 and
453 but no instance of pattern τ = 3-1-2. In this case, we say that σ contains π and avoids τ . The dashes,
which are often dropped when referring to classical patterns, are used to indicate that the terms involved
in an occurrence of the pattern may be separated by an arbitrary number of other terms. A generalized
permutation pattern (introduced by [1]) is a pattern where some letters adjacent in a pattern must also be
adjacent in a containing permutation. Such adjacent pairs in a pattern are then not separated by a dash.
For example, 453 is an instance of pattern 2-31 in 214653, while 463 is an instance of pattern 23-1, but not
2-31. If π is a pattern and σ is a permutation, we write (π)σ for the number of occurrences of π in σ. We also
write Sn(π) = {σ ∈ Sn | (π)σ = 0}. One of the earliest results concerning patterns is that |Sn(π)| = Cn,
the nth Catalan number, for any classical pattern π ∈ S3. The same holds for π = 2-31 and π = 31-2 since
Sn(2-31) = Sn(2-3-1) and Sn(31-2) = Sn(3-1-2). See [2] for more on patterns and pattern avoidance.

We will now show a nice application of row decomposition. In [9], another bijection Ψ : Sn → Sn is given
(to be described later on in this paper) that implies that the permutation tableaux containing a single 1 in
each column (i.e. the fewest possible number of 1s) are the images of permutations avoiding pattern 2-31,
and thus are counted by the Catalan number Cn = 1

n+1

(
2n
n

)
. Open Problem 6 in [9] asks for “a bijection

from these tableaux to any well-known set of objects enumerated by Catalan numbers”. We will give such
a bijection using Remark 2.7.

Theorem 3.1. There is a natural bijection between k-row permutation tableaux with n− k 1s (i.e. a single
1 per column) and noncrossing partitions of [n] with k blocks.

Hence, the number of permutations corresponding to these tableaux that have k weak excedances is the
number of partitions of [n] with k blocks, i.e. the Narayana number N(n, k) = 1

n

(
n
k

)(
n

k−1

)
for any k ∈ [n].

Proof. Suppose that T is a tableau with a single 1 in each column, and let π = Φ(T ) ∈ Sn. Consider the
row decomposition of π. Since each column contains a single 1, each column label occurs in only one of the
cycles. Each row label also occurs in a single cycle. Thus, every label occurs once in the row decomposition
of π, hence the cycles in the row decomposition of π are mutually disjoint, and the underlying sets for these
cycles form a set partition Π of [n]. Suppose that there cycles γ1 6= γ2 in the row decomposition of π such
that γ1 contains elements a, c and γ2 contains elements b, d such that a > b > c > d. Thus, if γ2 is to the left
of γ1, then γ2 also contains b, and if γ1 is to the left of γ2, then γ1 also contains c. This contradicts the fact
that each element in [n] must occur in a single cycle of the row decomposition of π, so Π is noncrossing. ¤

We note that the set En of permutations whose cycle decomposition corresponds to noncrossing partitions
of n occurs in [3] as the set of sequences of halves of even-valued entries of 3-1-4-2 avoiding Dumont permu-
tations of the second kind. Note also that En is exactly the set of permutations whose column decomposition
contains only 2-cycles.

The next theorem describes the tableaux of 3-2-1 avoiding permutations.

Theorem 3.2. The tableaux of 3-2-1 avoiding permutations are exactly those whose rows and columns are
all nondecreasing from left to right and from top to bottom, respectively.

Proof. Note that π is a 3-2-1 avoiding permutation if and only if each element of π is either a left-to-right
maximum or a right-to-left-minimum, i.e. if and only if π is the identity or a union of two nondecreasing
subsequences. Again, without loss of generality assume that n is not a fixed point of π, i.e. π(n) < n.
Suppose that the first column contains a 0 at row l that is underneath a 1 at row i. Then as in the proof
of Theorem 2.2, we have i < l ≤ π(l) < π(i). Hence, to avoid an occurrence of 3-2-1 in π, we must have
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π(m) > π(l) ≥ l for all m > l, so π must have at least n − l + 1 values greater than π(l) ≥ l (π(i) and
all π(m) for m > l), which is impossible. Therefore, the leftmost column of π must have all 0s atop all 1s.
Moreover, if the rows containing a dot in the leftmost column are labeled ij (1 ≤ j ≤ r), then the sequence
{π(ij)}r

j=1, is increasing.
Let π′ be the permutation defined as in Theorem 2.2. Assume that the sequence of wex tops of π′ (see

Definition 2.1) is increasing. We have π(l) = π′(l) for a wex bottom l < i1, as well as π(ij) = π′(ij+1) for
1 ≤ j < r, and π(ir) = π′(n) = n, so the sequence of wex tops of π is increasing if the sequence of wex tops
of π′ is increasing. Since the identity tableau has no columns and increasing wex tops, we see by induction
that if each column of π has all 0s atop all 1s, then the sequence of wex tops of π is increasing.

Thus, if π is 3-2-1 avoiding then the sequence of wex tops of π is increasing and each column of the tableau
of π has all 0s atop of all 1s. Likewise, π is the sequence of nonwex bottoms of π is increasing and each
row of the tableau of π has all 0s to the left of all 1s. Conversely, if both wex tops and nonwex bottoms are
increasing, then π is a union of at most 2 subsequences and hence avoids 3-2-1. ¤

Now we will describe a bijection Ψ on Sn that translates certain pattern statistics on permutations into
alignment and crossing statistics (see [9]) of the tableaux of their images. Given a permutation π ∈ Sn and
we define the right embracing number remb(π(i)) of the entry π(i) as the number of instances of 2-31 in π
that start with π(i). We also define the sequence remb(π) = {remb(π(i)) | i ∈ [n]}. If π(i) > π(i + 1), then
π(i)π(i+1) is a descent of π, π(i) a descent top and π(i+1) is a descent bottom. Similarly, if π(i) < π(i+1),
then π(i) is a non-descent bottom and π(i + 1) is a non-descent top. Note that a permutation is uniquely
determined by the sets of its descents tops and descent bottoms and the sequence of its right embracing
numbers [9]. For π ∈ Sn, define the following sets:

db(π) = set of descent bottoms of π, ndt(π) = set of non-descent tops of π,

dt(π) = set of descent tops of π, ndb(π) = set of non-descent bottoms of π,

wexb(π) = set of wex bottoms of π, nwext(π) = set of nonwex tops of π,

wext(π) = set of wex tops of π, nwexb(π) = set of nonwex bottoms of π.

Note that ndt(π) = [n]\db(π), ndb(π) = [n]\dt(π), nwext(π) = [n]\wexb(π), nwexb(π) = [n]\wext(π).
The permutation σ = Ψ(π) is defined as follows. We set

wexb(σ) = {a + 1 | a ∈ db(π)} ∪ {1}, nwext(σ) = {a + 1 | a ∈ ndt(π), a 6= n},
wext(σ) = {a− 1 | a ∈ dt(π)} ∪ {n}, nwexb(σ) = {a− 1 | a ∈ ndb(π), a 6= 1}

Next we use remb(π) to determine the bijections wexb(σ) → wext(σ) and nwext(σ) → nwexb(σ) that
together form Ψ. First, we find a = maxwexb(σ), then find the (rembπ(a) + 1)-st smallest element in
wext(σ) among those greater than or equal to a, call it b. Then b = σ(a). Next we delete a from wexb(σ)
and b from wext(σ) and iterate this process until there are no more wex bottoms left. Similarly, we find
c = minnwext(σ), then find (rembπ(c) + 1)-st largest element in nwexb(σ) among those less than c, call
it d. Then d = σ(c). Next we delete c from nwext(σ) and d from nwexb(σ) and iterate this process until
there are no more nonwex tops left.

Recall that [9] showed that Ψ(Sn(2-31) is the set of permutations whose tableaux have a single 1 per
column. Here we establish another pattern-related result concerning Ψ.

Theorem 3.3. Ψ(Sn(31-2)) = Sn(3-2-1), i.e. Ψ(Sn(31-2)) is the set of permutations whose tableaux have
nondecreasing rows and columns.

Proof. Let π ∈ Sn, and let σ = Ψ(π). It is shown in [9] that the occurrences of 3-12 in π correspond to
pairs i, j ∈ [n] such that j < i ≤ σ(i) < σ(j) or σ(j) < σ(i) < i < j. In other words, i and j are both wex
bottoms or both nonwex tops (i.e. σ(i) and σ(j) are both wex tops or both nonwex bottoms), and σ has an
inversion at positions (i, j). Therefore, π avoids 31-2 if and only if the sequence of wex tops of σ and the
sequence of nonwex bottoms of σ both have no inversions, i.e. are increasing. In other words, σ is a union
of at most two increasing subsequences, that is σ ∈ Sn(3-2-1). ¤
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4. Essential 1s

Definition 4.1. Given a permutation tableau T , we call the topmost 1 in each column and the leftmost 1
in each row an essential 1. If a 1 is both the leftmost 1 in its row and the topmost 1 in its column, then we
call it doubly essential. Let ess(T ) and dess(T ) be the number of essential 1s and doubly essential 1s in T .

Note that for any tableau T in a k × (n− k) rectangle, we have ess(T ) + dess(T ) = k + (n− k) = n by a
simple sieve argument. Obviously, each nonessential 1 is induced by a pair of essential 1s so each tableau is
determined by its essential 1s. It was conjectured in [9] that distribution of the bistatistic (ess, rows) of the
number of essential 1s and the number of rows on permutation tableaux is the same as that of the bistatistic
(cycles,wex) of the number of cycles and the number of weak excedances on permutations. We will show
the following.

Theorem 4.2. The bistatistics (dess, rows) on tableaux bounded by a path of length n and (cycles, wex) on
permutations in Sn have the same distribution.

Consideration of essential 1s suggests a different type of tableau, which we will call a bare tableau or a
0-hinge tableau, that results from removing all nonessential 1s from a permutation tableau. A bare tableau
is defined almost the same way as a permutation tableau, except that the 1-hinge property is replaced with
the following 0-hinge property:

(0-hinge): A cell in Yλ with a 1 above it in the same column and a 1 to its left in the same row must
contain a 0.

We also define (see (4.1)) two maps θ and φ on tableaux of the same shape that result in removal and
filling of all nonessential 1s, respectively, as well as a map Θ from bare tableaux to permutations, similar
to Φ, i.e. given by southeast paths from the northwestern to the southeastern boundary of the tableau that
switch direction at each 1. Empty circles denote essential 1s, double circles denote doubly essential 1s.

φ(B) = T =

} ◦ ◦
} • •

◦ • •
◦ •

←→ θ(T ) = B =

} ◦ ◦
}

◦
◦

=
(

} ◦ ◦
◦ , 13468

)
⊕

(
}
◦ , 257

)

Φ(T ) = π = 65187243 = (16257483) ←→ Θ(B) = τ = 45187326 = (14863)(257)

(4.1)

It is easy to see that the diagram D(B) of a bare tableau is a binary forest, since every vertex may only
have a single edge connecting it to a vertex above or to the left of it and at most two edges to vertices south
and east of it. Indeed, if there are edges south and east to the same vertex, then B has a 1-hinge at that
vertex, which is impossible. Moreover, the doubly essential 1s are exactly the roots of those binary trees.

The resulting trees are labeled as follows. The root has the two labels of the row and column of the cell
that contains it. Each nonroot vertex has a single label: the column (resp. row) label of the cell containing
it if that vertex is reached by an edge south (resp. east) when traveling from a root vertex. Call a nonroot
vertex a left son if it get a row label, and a right son if it gets a column label. Then the following property
is easy to see: both sons of each left son labeled a have labels greater than a, and both sons of each right
son labeled b have labels less than b. Also, the root gets the least and the greatest label in each tree, and
thus has the properties of both a left son and a right son.

Thus, each bare tableau B can be decomposed into several tableaux each of which corresponds to a single
binary tree in D(B) labeled as described above.

(4.2) B =

} ◦ ◦
}

◦
◦

=
(

} ◦ ◦
◦ , 13468

)
⊕

(
}
◦ , 257

)
←→ l r

r

l

1,8

4 6

3

2,7

5

The permutation τ = Θ(B) is obtained by traversing each labeled binary tree as in (4.2) as follows:
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(1) Start from the smallest label (at the root) along the l-edge, if possible. If there is no left son, this is
the first return to the root (see last rule).

(2) At each step, start at the previously reached vertex (say, v) and attempt to travel away from the
root alternating unused l and r edges for as long as possible. The label of the end vertex w of this
path is the next term in the cycle.

(3) If no edges starting at v away from the root exist or are unused, travel from v towards the root along
the edges with the same labels as long as possible. The label of the end vertex w of this path is the
next term in the cycle.

(4) At the first return to the root, the next term is the largest label at the root. At the second return
to the root (including the case when there is no right son), the cycle is complete.

For example, the traversal of the trees in (4.2) yields the cycles (14863) and (257) as desired.
Note that the removal of nonessential 1s leaves the labels of rows and columns the same, and rows

still correspond to weak excedances (in particular, zero rows correspond to fixed points), while columns
correspond to deficiencies. Thus, to prove Theorem 4.2 we first need to prove the following.

Theorem 4.3. If B is bare tableau with no zero rows and a single doubly essential 1, then τ = Θ(B) is a
cyclic permutation of length greater than 1. Moreover, B is uniquely recoverable from τ in the cycle notation.

Proof. The doubly essential 1 (i.e. the root of the corresponding labeled binary tree) must have the labels
(1, n) where n is the length of the southeast boundary P of B. Suppose the successive left sons away from
the are labeled i1, i2, . . . , ir. Then 1 < i1 < i2 < · · · < ir < n, and each ij+1 is the left son of ij (letting
i0 := 1 and ir+1 := n). Let D(Bij ) be the subtree of D(B) with the right son of ij as the root. Then

traversal(D(B)) = 1, traversal(D(Bi1)), i1, traversal(D(Bi2)), i2, . . . , traversal(D(Bir )), ir, n, traversal(D(Bn))

Each Bij is strictly smaller than B, so by inductive assumption the traversal of Bij contains every vertex label
of Bij once. Hence, the traversal of B contains every label of B once, i.e. τ = Θ(B) is a cyclic permutation.

Note also that the first part of Theorem 2.2 (i.e. that π = π′ ◦ (i1 i2 . . . ir n)) remains true for bare
tableaux after changing Φ to Θ. Thus, to show that Θ is a bijection we only need to prove that we can
uniquely recover the leftmost column of the bare tableau B with no fixed points and a single doubly essential
1 from the cyclic permutation τ = Θ(B).

It is not hard to see that because ij is a left son, every label in D(Bij ) is larger than ij . Hence,
if ρ is obtained by removing the parentheses from τ written in the cycle notation starting with 1, then
{ir, ir−1, . . . , i1, 1} are the right-to-left minima of the prefix of ρ before n. ¤

Now Theorem 4.3 clearly implies Theorem 4.2. Note that we can similarly prove that the column labels
of vertices in the top row (i.e. row 1) of B are the right-to-left maxima of the suffix of ρ starting with n.
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