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EXTENDED ABSTRACT

1 Dyck paths

In the present work we will consider three different kinds of combinatorial
objects, namely paths, set partitions and permutations, trying to relate them
by means of some natural partial order structure.

Our starting point is one of the main results of [BBFP], which we are
going to recall in the next lines. Denote by Dn, NC(n) and Sn(312) the sets
of Dyck paths of length 2n, noncrossing partitions of [1, n] and 312-avoiding
permutations of [1, n], respectively, where [1, n] is the set of positive integers less
than or equal to n. For our purposes, the following notations will be particularly
useful:

• Dyck paths will be represented either as finite words on the two letter
alphabet {u, d} or as functions with nonnegative integer values; in this
latter interpretation, it is Dn = {P : [0, 2n] → N | P (0) = P (2n) =
0, |P (k + 1)− P (k)| = 1, ∀k < 2n};

• each noncrossing partition π ∈ NC(n) is represented as π =
B1|B2| · · · |Bk, where the element inside each block Bi are in decreasing
order, whereas the blocks are listed with their maxima in increasing order
(so that max Bi < maxBi+1, for each i < k).

There are well known bijections linking Dn, NC(n) and Sn(312). More
precisely:

• Fix a Dyck path and label its up steps by enumerating them from left to
right (so that the k-th up step is labelled k). Next assign to each down
step the same label of the up step it is matched with. Now consider the
partition whose blocks are constituted by the labels of each sequence of
consecutive down steps. Such a partition is easily seen to be noncrossing.
This correspondence, recalled for instance in [Si], is a bijection between
Dn and NC(n).
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• Given a noncrossing partition π = B1| · · · |Bk, removing the bars generates
a 312-avoiding permutation. This correspondence is a bijection between
NC(n) and Sn(312).

The set Dn can be endowed with a very natural and remarkable order
structure [FP]: if P, Q ∈ Dn, we define P ≤ Q when P (i) ≤ Q(i), for every
i ≤ 2n. The properties of the poset [Dn;≤] have not been fully investigated yet;
it can be shown that it is in fact a distributive lattice, whose rank function is
essentially given by the area determined by a Dyck path and the x-axis. Such a
distributive lattice will be called the Dyck lattice of order n.

For any π = B1| · · · |Bk ∈ NC(n), denote by max(π) the vector whose i-th
component is the maximum of the first i elements of π in the above canonical
representation. We define the Bruhat order on NC(n) by saying that π ≤ ρ
when max(π) ≤ max(ρ). The resulting poset turns out to be a distributive
lattice, which we call the Bruhat noncrossing partition lattice of order n. The
following theorem contains some of the main results of [BBFP].

Theorem 1.1 For any n ∈ N, the following order structures are isomorphic:

1. the Dyck lattice Dn;

2. the Bruhat noncrossing partition lattice NC(n);

3. Sn(312) as a subposet of Sn endowed with the strong Bruhat order.

In particular, Sn(312) is a distributive lattice with respect to the strong Bruhat
order.

The above theorem can be proved essentially by showing that the above
mentioned bijections are in fact order-isomorphisms.

Recalling [I] that the reverse and complement functions are antiisomor-
phisms and the inverse function is an isomorphism (with respect to the strong
Bruhat order), an immediate consequence of theorem 1.1 is the following:

Proposition 1.1 For every n ∈ N, Sn(312) is order-isomorphic to Sn(231) and
order-antiisomorphic to Sn(132) and Sn(213). Therefore all the above posets are
distributive lattices. The posets Sn(123) and Sn(321) are not even lattices, since
they do not have minimum and maximum, respectively.

Clearly the posets Sn(123) and Sn(321) are antiisomorphic.

Open problem 1. Describe the poset Sn(123).

Open problem 2. Fixed k ∈ N, k > 3, for which τ ∈ Sk is Sn(τ) a
(distributive) lattice? In case of a positive answer, is it possible to give some
alternative combinatorial descriptions of such lattices?

2 Motzkin paths

In this section we try to develop the above considerations in the case of
Motzkin paths. Also in this case, introducing a partial order analogous to that
of Dyck paths, the set Mn of Motzkin paths of length n is a distributive lattice
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[FP], called the Motzkin lattice of order n. Here the rank of a Motzkin path
coincides with the area determined by the path itself and the x-axis.

We start by recalling a bijection considered by Elizalde and Mansour [EM]
between Mn and the set D(3)

n of Dyck paths of length 2n without three consec-
utive down steps. Every Dyck path P ∈ D(3)

n can be uniquely decomposed into
factors of the following three types: u, ud, udd. Define a Motzkin path f(P ) by
translating the above factors according to the following:

u → u

ud → h

udd → d,

where h denotes the horizontal step. The path f(P ) has length n and it is
possible to show that the function f is a bijection. Our next proposition shows
that f has some more structural properties.

Proposition 2.1 The function f : D(3)
n −→Mn is an order-isomorphism.

The bijection between Dn and NC(n) recalled in section 1 can be restricted
to D(3)

n ; the corresponding subset of NC(n) is easily seen to consist of noncross-
ing partitions whose blocks have cardinality at most 2. Call such partitions
Motzkin noncrossing partitions. Thanks to the last proposition we can establish
the following result.

Theorem 2.1 The set MNC(n) of Motzkin noncrossing partitions of [1, n] can
be endowed with a distributive lattice structure, which is isomorphic to the lattice
of Motzkin paths of length n. More precisely, given π, ρ ∈ MCN(n), we have that
π ≺ ρ (i.e., π is covered by ρ) if ρ is obtained from π by moving the minimum
of some block B of π into the block B̃ containing the element β = max B + 1 if
β = min B̃. In this case, either:

1. keep β inside B̃, if |B̃| = 1, or

2. add a new block B̂ = {β}, if |B̃| = 2.

Example. Given the partition 2|31|65|74|8 ∈ MNC(n), there are two par-
titions covering it, which are 2|3|4|65|71|8 (1 is moved into a block with two
elements) and 2|31|65|7|84 (4 is moved into a block with one element). Note
that we cannot move neither 2 nor 5, since the elements 3 and 7 are not the
minima of their blocks.

Similarly to [BBFP], it is possible to transfer the distributive lattice
structure on Motzkin noncrossing partitions to a suitable class of pattern
avoiding permutations, via a bar-removing bijection. In [C] it is shown that
Sn(3 − 21, 31 − 2) is counted by Motzkin numbers. Here we give a bijection
between MNC(n) and Sn(3− 21, 31− 2).

Proposition 2.2 Removing the bars in Motzkin noncrossing partitions defines
a bijection between MNC(n) and the set Sn(3− 21, 31− 2) of pattern avoiding
permutations of [1, n], for any n ∈ N.
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To prove that the above bar-removing bijection between MNC(n) and
Sn(3 − 21, 31 − 2) is also an order-isomorphism, we just notice that such a bi-
jection is obtained by simply restricting the bar-removing isomorphism between
NC(n) and Sn(312) considered in [BBFP]. Therefore the following theorem
holds.

Theorem 2.2 Let (Sn(3− 21, 31− 2);≤) be the poset obtained by transferring
the distributive lattice structure defined in theorem 2.1 along the bar-removing
bijection. This is precisely the subposet induced on Sn(3 − 21, 31 − 2) by the
strong Bruhat order of the symmetric group Sn. Therefore Sn(3− 21, 31− 2) is
a distributive sublattice of Sn endowed with the strong Bruhat order.

An immediate consequence of the preceding theorem is stated in the fol-
lowing, remarkable corollary.

Corollary 2.1 For any n ∈ N, the Motzkin lattice Mn is isomorphic to the
lattice Sn(3− 21, 31− 2) with the strong Bruhat order.

3 Schröder paths

In this section we try to find analogous results starting from Schröder paths.
The set Sn of Schröder paths of length 2n is a distributive lattice [FP]. Also
in this case, for two Schröder paths of length 2n, having the same area means
having the same rank in Sn.

The key idea consists of interpreting Schröder paths as Dyck paths with
bicoloured peaks. Denote by Dn the set of Dyck paths of length 2n whose peaks
can possibly be coloured. There is an obvious bijection between Dn and the
set Sn of Schröder paths of length 2n (just map noncoloured peaks into simple
peaks, coloured peaks into a pair of consecutive horizontal steps, and leave the
remaining steps unchanged; from this bijection, which has been considered in
[Su], immediately follows the identity Rn =

∑n
k=1 2kN(n, k), where Rn denotes

the n-th Schröder number). Thanks to this simple observation, it is not difficult
to find a suitable set of coloured noncrossing partitions in bijection with Schröder
paths.

Proposition 3.1 Denote by NC(n) the set of noncrossing partitions of [1, n]
such that the maximum of each block can possibly be coloured. Then there is a
bijection between Sn and NC(n).

The order structure on Sn can be transferred on NC(n) by means of the
above bijection. The resulting lattice will be called the Schröder (type B) non-
crossing partition lattice of order n. Therefore we have the following theorem:

Theorem 3.1 (Characterization of coverings in NC(n)) Given two coloured
noncrossing partitions π, ρ ∈ NC(n), we have π ≺ ρ if and only if ρ is obtained
from π by either

1. removing the colour from an element of π, or

2. moving the minimum of some block B of π into the block B̃ containing the
element β = max B + 1 only when β is not coloured; moreover:
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(a) if β = max B̃, then keep β inside B̃ and colour it;

(b) if β 6= max B̃, then add the block B̂ = {β}.
Example. Given the partition 5̄43|62|871|9̄ ∈ NC(n), there are pre-

cisely four partitions covering it, which are 543|62|871|9̄ (5̄ is not coloured),
5̄4|6̄32|871|9̄ (3 is moved and 6 is the maximum of its block), 5̄43|6|7̄|821|9̄ (2
is moved and 7 is not the maximum of its block) and 5̄43|62|871|9 (9̄ is not
coloured). Note that the partition obtained by moving 1 into the block con-
taining 9 (i. e. the maximum of its block plus 1) is not listed above, since 9 is
coloured.

Following the same lines of [BBFP], we now look for a suitable set of
coloured pattern avoiding permutations in bijection with both Schröder paths
and Schröder noncrossing partitions. In what follows, we denote by Sn the set
of coloured permutations of [1, n], i.e. permutations whose elements can possibly
be coloured. The study of the enumerative properties of coloured pattern avoid-
ing permutations has been pursued by several authors, see for example [M]. Our
next result implies that a certain class of coloured pattern avoiding permutations
is enumerated by Schröder numbers. This fact has been independently proved
by Egge [E] using algebraic arguments; here we propose a bijective proof, as
well as a presumably new order structure connecting such class of permutations
with Schröder paths and Schröder noncrossing partitions.

Theorem 3.2 Removing the bars in coloured noncrossing partitions defines a
bijection between NC(n) and the set Sn(312, 2̄1̄, 21̄, 3̄12), for any n ∈ N.

Using the above bar-removing bijection we can now transfer the order struc-
ture of Schröder paths on the set Sn(312, 2̄1̄, 21̄, 3̄12). What we obtain is clearly a
distributive lattice, whose covering relation is described in the next proposition.

Proposition 3.2 Given π, ρ ∈ Sn(312, 2̄1̄, 21̄, 3̄12), it is π ≺ ρ if and only if ρ
is obtained from π by either:

1. removing the colour from an element of π, or

2. interchanging the last element a of a descent of π with β, where β − 1 is
the first element of that descent, and colouring β; this last operation can
be performed exclusively when a and β are both uncoloured.

Remark. We recall that it is possible to define a notion of Bruhat order on
coloured permutations, as it is reported, for instance, in [BB]. Unfortunately,
the restriction of this Bruhat order to Sn(312, 2̄1̄, 21̄, 3̄12) does not match our
poset.

Open problem 3. Concerning the above remark, the Bruhat order on
Sn is defined as the Bruhat order on the set of permutations with ground set
{1, . . . n, 1, . . . n}, where the elements are linearly ordered as they are listed
above (i.e., 1 < · · · < n < 1 < · · · < n). Is it possible to fine a suitable linear
order on {1, . . . n, 1, . . . n} such that the resulting Bruhat order on Sn coincides
with our partial order?

Let π ∈ Sn; we denote by inv(π) the set of the inversions of π and nb(π)
the number of the uncoloured entries of π. Then the following proposition holds.
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Proposition 3.3 The rank of an element π in the lattice Sn(312, 2̄1̄, 21̄, 3̄12)
is given by

r(π) = 2|inv(π)|+ nb(π) .
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