The first appearance of a 123 pattern

Torey Burton Anant Godbole Brett Kindle Department of Mathematics East Tennessee State University Johnson City, Tennessee 37614, USA.

April 27, 2006

Let $\pi \in S_{\mathbf{Z}}^+$ denote a random one-to-one function from $\mathbf{Z}^+ = \{1, 2, \ldots\}$ to \mathbf{Z}^+ . Order the 3-subsets (written in an increasing ordered fashion) of \mathbf{Z}^+ lexicographically as

 $\{1, 2, 3\}, \{1, 2, 4\}, \dots \{1, 3, 4\}, \{1, 3, 5\} \dots \{2, 3, 4\} \dots$

It is then clear that the first 1-2-3 pattern X must occur at positions $\{1, s, t\}$ for some s, t since given $\pi(1)$ there must exist an $s \ge 2$ with $\pi(s) > \pi(1)$ and a t > s such that $\pi(t) > \pi(s)$. We find, for $2 \le s < t < \infty$ the probability

 $p_{1,s,t} = \mathbb{P}(\text{the first } 1 - 2 - 3 \text{ pattern occurs at positions } \{1, s, t\}).$

The situation gets far more complicated when $\pi \in S_n$ is a random permutation of the first *n* integers since then the first 1-2-3 pattern can occur at any 3subset of $\{1, 2, ..., n\}$. We provide an explicit formula for $p_{1,s,t}$; $2 \leq s < t \leq n$ and prove several facts regarding $p_{r,s,t}$: $2 \leq r < s < t \leq n$. Among these are

$$\mathbb{P}(\text{the first } 1-2-3 \text{ pattern occurs at or after position } \{2,3,4\}) \sim \frac{e}{n}$$

Various summary statistics for X such as means and quantiles are derived both in the finite and infinite cases.