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Abstract. Deodhar [Deo90] proposes a combinatorial framework for determining the Kazhdan-
Lusztig polynomials of an arbitrary Coxeter group. The algorithm he describes is shown to
work for all Weyl groups, but typically involves recursion. However, under a certain condition
on the element w of a Weyl group, Deodhar’s algorithm for determining the Kazhdan-Lusztig
polynomial Px,w associated to the elements x and w, for any x ≤ w in the Weyl group, turns out
to be a simple combinatorial formula. We say that w is Deodhar when it satisfies the condition.
In this paper we characterize the Deodhar property for elements of finite Weyl groups using
a new form of pattern avoidance inspired by reduced expressions and heaps, rather than the
1-line notations on which the traditional forms of pattern avoidance rely. The embedded factor
pattern avoidance turns out to be more efficient than the standard pattern avoidance (although
either can be used to detect the Deodhar condition). In order to perform this characterization,
we enhance the definitions and techniques found in [BW01], which showed that the Deodhar
condition for type A is equivalent to avoiding short-braids, and a single additional embedded
factor pattern called a hexagon.

1. Extended abstract

The Kazhdan-Lusztig polynomials for finite Weyl groups arise as Poincaré polynomials for
intersection cohomology of Schubert varieties [KL80] and as a q-analog of the multiplicities for
Verma modules [BB81, BK81]. They are defined to be the coefficients in the transition matrix
for expanding the Kazhdan-Lusztig basis elements in the Hecke algebra associated to the Weyl
group into the standard basis. Several recursive algorithms exist, formulas for special cases, and
interesting properties are known for these polynomials; see for example [MW02, Pol99, LS81,
Bre04, Deo94, Hum90]. In particular, these polynomials have nonnegative integer coefficients
but no explicit combinatorial interpretation for the coefficients is known in general.

Deodhar [Deo90] proposes a combinatorial framework for determining the Kazhdan-Lusztig
polynomials of an arbitrary Coxeter group using a combinatorial approach. The algorithm he
describes is shown to work for all Weyl groups where the Kazhdan-Lusztig polynomials are
known to have nonnegative integer coefficients, which includes affine and finite Weyl groups,
but typically involves recursion. However, under certain conditions, Deodhar’s algorithm for
determining some of the Kazhdan-Lusztig polynomials turns out to be a beautiful combinatorial
formula. We say that a Weyl group element w is Deodhar when it satisfies these conditions.

In 1999, Billey and Warrington [BW01] gave an efficient characterization of the Deodhar
elements in the symmetric group as 321-hexagon avoiding permutations. Their results extend
to finite linear Weyl groups, types A,B, F, G. Our goal is to give a similar characterization for
all finite Weyl groups. Traditional pattern avoidance and the generalized pattern avoidance for
Coxeter groups in [BP05, BB02] lead to long lists of patterns in types D and E necessary to
characterize the Deodhar elements. We describe a new type of pattern that we call embedded
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factors which can be defined for all Coxeter groups and lead to a short list of minimal patterns
for the Deodhar elements in finite Weyl groups.

Our main theorem states that the Deodhar elements of Weyl groups can be characterized
by avoiding embedded factors from the following list, as well as an additional 1-line pattern
for type D. This characterization can be translated into a polynomial time algorithm by using
generalized pattern avoidance with a finite but long list of patterns. For example, the Weyl group
of type E8 has parabolic subgroups of types A2, A7, D6, E6, and E7 from this list. Therefore, a
Deodhar element w in the Weyl group of type E8 cannot be written in the form w = avb where
l(w) = l(a)+ l(v)+ l(b) and v has a reduced expression of the form of a short-braid, the hexagon,
HEX5, or any of the E6 or E7 patterns on the corresponding parabolic subgroup. In type Dn,
the Deodhar elements must also avoid the “D-hexagon” [−1, 6, 7, 8,−5, 2, 3, 4] as a generalized
1-line pattern.

Lie Type Coxeter Graph Embedded Factor Patterns
A2 •1 •2 s1s2s1, s2s1s2 (short-braids)

A7 •1 •2 •3 •4 •5 •6 •7 s5s6s7s3s4s5s6s2s3s4s5s1s2s3 (hexagon)

B2 •0 •1
4 s0s1s0 (short-braid)

B7/C7 •0 •1
4 •2 •3 •4 •5 •6 s4s5s6s2s3s4s5s1s2s3s4s0s1s2 (hexagon)

G2 =
I2(6)

•1 •2
6 s1s2s1 (short-braid)

D6 •1̃

•1 •2

B
B
B
B

•3 •4 •5

s3s4s5s1s2s3s4s1̃s2s3s1 (HEX5)

D7 •1̃

•1 •2

B
B
B
B

•3 •4 •5 •6

s3s4s5s6s2s3s4s5s1̃s2s3s4s1s2s3 (HEX2)
s4s5s6s2s3s4s5s1s2s3s4s1̃s2s1 (HEX3a)
s1s4s5s6s2s3s4s5s1̃s2s3s4s1s2 (HEX3b)

D8 •1̃

•1 •2

B
B
B
B

•3 •4 •5 •6 •7

s4s5s6s7s3s4s5s6s2s3s4s5s1̃s1s2s3s4

(D-hexagon, to be avoided as a 1-line
pattern)

E6 •5

•0 •1 •2 •3 •4

s0s1s2s5s3s4s2s3s1s2s5s0s1

s5s1s2s3s0s1s2s5s4s3s2s1s0

s1s2s5s3s4s2s3s1s2s5s0s1s2

s2s5s1s2s3s0s1s2s5s4s3s2s1

E7 •5

•0 •1 •2 •3 •4 •5

s0s1s2s3s4s6s5s2s3s4s1s2s3s0s1

s3s4s6s1s2s3s0s1s2s5s4s3s2s1s0

s1s2s3s4s6s5s2s3s4s1s2s3s0s1s2

s2s3s4s6s1s2s3s0s1s2s5s4s3s2s1

s5s2s3s4s6s1s2s5s3s4s2s3s0s1s2s5

Figure 1. Minimal non-Deodhar patterns
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Let W be a Coxeter group with generating set S and relations of the form (sisj)m(i,j) = 1. For
a reader unfamiliar with Coxeter groups, we recommend either the classic text by Humphreys
[Hum90] or the recent text by Björner and Brenti [BB05]. The Coxeter graph for W is the graph
on the generating set S with edges connecting si and sj labeled m(i, j) for all pairs i, j with
m(i, j) > 2. For example, the table in Figure 1 shows the Coxeter graphs for the finite Weyl
groups which contain minimal non-Deodhar patterns. Note, if m(i, j) = 3 it is customary to
leave the corresponding edge unlabeled.

An expression is any product of generators from S. The length l(w) of an element w ∈ W ,
is the minimum length of any expression for the element w. Such a minimum length expression
is called reduced. Each element w ∈ W can have several different reduced expressions which
represent it. Given w ∈ W , we represent a reduced expressions for w in sans serif font, say w =
w1w2 · · ·wp where each wi ∈ S. When W is the symmetric group, we may represent permutations
uniquely with one-line notation by w = [w1 . . . wn] where w is the bijection mapping i to wi.

Let w, y ∈ W . We say that w contains y as a factor if there exist elements a and b in W
such that w = ayb and l(w) = l(a) + l(y) + l(b). Equivalently, w contains y as a factor if some
reduced expression for w contains some reduced expression for y as a consecutive subword, i.e.
w = w1w2...wp and y = wiwi+1 · · ·wj for some 1 ≤ i ≤ j ≤ p. The induced partial order on
Coxeter group elements is known as the two-sided weak Bruhat order [BB05].

Our first result is:

Theorem 1.1. If y is not Deodhar and w contains y as a factor, then w is not Deodhar either.

This theorem implies that the non-Deodhar elements form an upper order ideal in the two-
sided weak Bruhat order. In order to obtain a generating set for this ideal, we consider a
refinement of factor containment.

Definition 1.2. Let W be a Coxeter group with associated Coxeter graph G. For any p ∈ W , let
Gp be the induced subgraph of G with verticies in the support of p, and let Wp be the parabolic
subgroup generated by the support of p. Then, a Coxeter embedding of Gp is an injective map
of the generators f : Gp → G which restricts to a labeled graph isomorphism onto its image.

A Coxeter embedding induces an injection from Wp to W , and we will abuse notation and
call this map f : Wp → W a Coxeter embedding also.

It follows from the definition of the Deodhar condition that p is Deodhar if and only if f(p)
is Deodhar, for any Coxeter embedding f : Gp → G. This leads to the central definition for our
characterization result.

Definition 1.3. Suppose W is a Coxeter group, and y ∈ W . Let Y be the parabolic subgroup
whose generators are determined by the support of y. If f : Y → W is a Coxeter embedding,
and w ∈ W contains y as a factor, then we say that w contains f(y) as an embedded factor,
denoted y � w.

This definition yields a stronger reformulation of Theorem 1.1, which enables us to use shorter
lists of non-Deodhar patterns.

Corollary 1.4. Let y be a Coxeter element that is not Deodhar. If w is a Coxeter element that
contains y as an embedded factor, then w is not Deodhar either.

Here are a few examples of embedded factors.

Example 1.5. In type A, the Coxeter embeddings of connected subgraphs are simply shifts of
the generators along the linear Coxeter graph or shifts of the dual element. In particular, if the
generators are labelled so that s1, s2, . . . , sl form a path in the Coxeter graph, then the images
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of the reduced expression si1si2 . . . sik are all of the form si1+jsi2+j . . . sik+j . Additionally, there
is one other Coxeter embedding which realizes the dual of an element, mapping si to sn−i+1 for
each i ∈ {1, . . . , n}.
Example 1.6. In the Coxeter group of type B4, [24̄513̄] = s1s2s3s1s0s1s2s1s0s4s3s4s1 contains
the factor s4s3s4 in the parabolic subgroup generated by the support s3, s4. This subgroup
is isomorphic to S3 and s4s3s4 maps to s2s1s2 = [321] ∈ S3, so [24̄513̄] contains [321] as an
embedded factor.

There are several relevant partial orders on Coxeter groups that we use for pattern contain-
ment:

Notation Partial order
p ≤2 w Two-sided weak Bruhat order
p � w Embedded factor containment
p E w Classical permutation pattern containment

We compare embedded factor pattern containment in type A with classical permutation pat-
tern avoidance.

Definition 1.7. We say that p is connected if supp(p) forms a connected subset of the Coxeter
graph.

Definition 1.8. Let u = [u1u2 . . . un] ∈ Sn, and let i1, i2, . . . , ik be marked positions in the 1-
line notation for u. Then, we say v ∈ Sk is a flattening of u with respect to positions i1, i2, . . . , ik
if v is the unique element of Sk for which u contains v as a permutation pattern in the marked
positions. That is, the 1-line notation for v is order-isomorphic to [ui1ui2 . . . uik ].

Theorem 1.9. Suppose w ∈ Sn and p ∈ Sk is connected. If p is an embedded factor of w, then
there exists q ∈ Sk and a Coxeter embedding g : Sk → Sk such that q ≥2 g(p) and w contains q
as a permutation pattern.

In order to study when the converse to this theorem holds, we make the following definition.

Definition 1.10. An element p of Sk is called an ideal pattern if avoiding it as an embedded
factor is equivalent to avoiding the upper order ideal Up =

⋃
g{q ∈ Sk : q ≥2 g(p)} as 1-line

permutation patterns, where g : Sk → Sk ranges over all Coxeter embeddings.

Proposition 1.11. Let p ∈ Sk. Then, p is an ideal pattern if and only if whenever w contains
p as a permutation pattern, it also contains p as an embedded factor pattern.

Tenner [Ten05] defines a notion of factor containment by considering linear shifts of reduced
expressions rather than equivalence by arbitrary Coxeter embeddings. However, if the permu-
tation is connected and we ignore the dual Coxeter embedding, this amounts to the same thing.
Hence, this work shows that on a single connected component, vexillary patterns (i.e. those
whose 1-line avoids the permutation pattern 2143) satisfy the converse of 1.9.

Theorem 1.12. [Ten05] Let p ∈ Sk be connected. If p is vexillary, then p is an ideal pattern.

It is possible to refine this result slightly using the more general definition of embedded factor
pattern containment.

Definition 1.13. Recall that p is connected if supp(p) forms a connected subset of the Coxeter
graph. If supp(p) consists of multiple connected components U1, . . . , Um in the Coxeter graph,
then we can write p as a product u1u2 . . . um where each ui is an element of the parabolic
subgroup generated by Ui. We denote this situation by p = u1 ⊕ · · · ⊕ um.
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Proposition 1.14. Let p ∈ Ak. If p = u1 ⊕ u2 · · · ⊕ um, then p is an ideal pattern if and only
if all of the ui are ideal patterns.

Example 1.15. Consider that w = [21354] = s1s4 contains p = [2143] = s1s3, both as a 1-
line permutation pattern, but also as an embedded factor pattern because we have the Coxeter
embedding f which maps s1 7→ s1 and s3 7→ s4. Observe that p has two connected components,
each of which are vexillary, and p is ideal.

On the other hand, w = [251364] = s4s1s3s5s2 contains p = [24153] = s1s3s2s4 as a permu-
tation pattern, but not as an embedded factor. This demonstrates that p is not ideal. Note that
p has a single connected component, and it is not vexillary.

We also obtain some preliminary enumerative results for embedded factor containment. In
particular, we obtain a Stanley-Wilf bound for embedded factor pattern classes via [MT04] by
relating the enumeration of embedded factor classes to that of classical permutation pattern
classes.

There has been some work on the enumeration of 1-line patterns in other Coxeter types (e.g.
[MW04] enumerates all classes in Bn with a basis from B2), but the enumeration of embedded
factor pattern classes is a completely unexplored area.

In contemplating the precise enumeration of ideal embedded factor pattern classes, it would
be interesting to investigate whether the ideal condition (that the class be closed in the ≤2

order) makes the enumeration any easier than for arbitrary permutation pattern classes.
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[MT04] Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley-Wilf conjecture. J.
Combin. Theory Ser. A, 107(1):153–160, 2004.

[MW04] T. Mansour and J. West. Avoiding 2-letter signed patterns. Sém. Lothar. Combin., 49:Art. B49a, 11 pp.
(electronic), 2002/04.

[MW02] Timothy McLarnan and Gregory Warrington. Counterexamples to the 0-1 conjecture. Preprint
math.CO/0209221, 2002.

[Pol99] Patrick Polo. Construction of arbitrary Kazhdan-Lusztig polynomials in symmetric groups. Represent.
Theory, 3:90–104 (electronic), 1999.

[Ten05] Bridget Tenner. Reduced decompositions and permutation patterns. arXiv:math.CO/0506242, 2005.

Department of Mathematics Box 354350, University of Washington, Seattle, WA 98195
E-mail address: brant@math.washington.edu

URL: http://www.math.washington.edu/~brant/

mailto:brant@math.washington.edu
http://www.math.washington.edu/~brant/

	1. Extended abstract
	Acknowledgments

