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Classifying Descents According to Equivalence mod k

Sergey Kitaev and Jeffrey Remmel

Abstract. In [5] the authors refine the well-known permutation statistic “descent” by fixing parity of one
of the descent’s numbers. In this paper, we generalize the results of [5] by studying descents according to
whether the first or the second element in a descent pair is equivalent to k mod k ≥ 2. We provide either
an explicit or an inclusion-exclusion type formula for the distribution of the new statistics. Based on our
results we obtain combinatorial proofs of a number of remarkable identities. We also provide bijective proofs
of some of our results.

1. Introduction

The descent set, Des(π), of a permutation π = π1π2 · · ·πn is the set of indices i for which πi > πi+1.
The number of descents in a permutation π, denoted by des(π), is a classical permutation statistic. This
statistic was first studied by MacMahon [8] almost a hundred years ago, and it still plays an important role
in the study of permutation statistics.

In [5], the authors considered counting descents according to the parity of the first or second element
of the descent pair. In this paper, we generalize Kitaev and Remmel’s results [5] by studying the problem
of counting descents according to whether the first or the second element in a descent pair is equivalent
to 0 mod k for k ≥ 2. For any k > 0, let kN = {0, k, 2k, 3k, . . .}. Given X ⊆ N = {0, 1, . . .} and
σ = σ1 · · ·σn ∈ Sn, we define the following:

• ←−−DesX(σ) = {i : σi > σi+1 & σi ∈ X} and
←−
desX(σ) = |←−−DesX(σ)|;

• −−→DesX(σ) = {i : σi > σi+1 & σi+1 ∈ X} and
−→
desX(σ) = |−−→DesX(σ)|;

• A
(k)
n (x) =

∑
σ∈Sn

x
←−
deskN (σ) =

∑bn
k c

j=0 A
(k)
j,nxj .

• B
(k)
n (x) =

∑
σ∈Sn

x
−→
deskN (σ) =

∑bn
k c

j=0 B
(k)
j,nxj .

• B
(k)
n (x, z) =

∑
σ∈Sn

x
−→
deskN (σ)zχ(σ1∈kN) =

∑bn
k c

j=0

∑1
i=0 B

(k)
i,j,nzixj .

Remark 1. Note that setting k = 1 gives us (usual) descents providing A
(1)
n (x) = B

(1)
n (x) = An(x),

whereas setting k = 2 gives
←−−
DesE(σ) and

−−→
DesE(σ) studied in [5].

Kitaev and Remmel [5] showed that there are some surprisingly simple formulas for the coefficients of
these polynomials. For example, they proved
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Theorem 1.

A
(2)
k,2n =

(
n

k

)2

(n!)2,

A
(2)
k,2n+1 =

1
k + 1

(
n

k

)2

((n + 1)!)2,

B
(2)
1,k,2n =

(
n− 1

k

)(
n

k + 1

)
(n!)2,

B
(2)
0,k,2n =

(
n− 1

k

)(
n

k

)
(n!)2,

B
(2)
0,k,2n+1 = (k + 1)

(
n

k

)(
n + 1
k + 1

)
(n!)2 = (n + 1)

(
n

k

)2

(n!)2, and

B
(2)
0,k,2n+1 = (n + 1)

(
n

k

)2

(n!)2.

The goal of this paper is to derive closed formulas for the coefficients of these polynomials. When
k > 2, our formulas are considerably more complicated than the formulas in the k = 2 case. In fact, in
most cases, we can derive two distinct formulas for the coefficients of these polynomials. We shall see that
there are simple recursions for the coefficients of the polynomials A

(k)
kn+j(x), B

(k)
kn+j(x), and B

(k)
kn+j(x, z) for

0 ≤ j ≤ k − 1. In fact, we can derive two different formulas for the coefficients of our polynomials by
iterating the recursions starting with the constant term and by iterating the recursions starting with highest
coefficient. For example, we shall prove the following theorem.

Theorem 2. For all k ≥ 2, n ≥ 0, and 0 ≤ j ≤ k − 1, A
(k)
s,kn+j =

((k − 1)n + j)!
s∑

r=0

(−1)s−r

(
(k − 1)n + j + r

r

)(
kn + j + 1

s− r

) n−1∏

i=0

(r + 1 + j + (k − 1)i) =

((k − 1)n + j)!
n−s∑
r=0

(−1)n−s−r

(
(k − 1)n + j + r

r

)(
kn + j + 1
n− s− r

) n∏

i=1

(r + (k − 1)i)(1)

These two different formulas for A
(k)
kn+j lead to a number of identities that are interesting in the own

right. Even in the case k = 2, we get some remarkable identities: for all n ≥ s,
(

n

s

)2

(n!) =
s∑

r=0

(−1)s−r

(
n + r

r

)(
2n + 1
s− r

) n−1∏

i=0

(r + 1 + i)

=
n−s∑
r=0

(−1)n−s−r

(
n + r

r

)(
2n + 1

n− s− r

) n∏

i=1

(r + i)(2)

It turns out that both of these identities can be derived by using certain hypergeometric series identities.
For example, we will show how (2) can be derived from Saalcshütz’s identity. Jim Haglund [4] suggested
that (1) should follow from Gasper’s transformation [2] of hypergeometric series of Karlsson-Minton type.
This is indeed the case but we will not include such a derivation in this paper since (1) is a special case of
wider class of identities that arise by studying the problem of enumerating permutations according to the
number of pattern matches where the equivalence classes of the elements modulo k for k ≥ 2 are taken into
account, see [6]. A general derivation of this wider class of identities from the Gasper’s transformation of
hypergeometric series of Karlsson-Minton type will appear in a subsequent paper [7].

2. Properties of A
(k)
n (x)

For j = 1, . . . , k − 1, let ∆kn+j be the operator which sends xs to sxs−1 + (kn + j − s)xs and Γkn+k be
the operator that sends xs to (s + 1)xs + (kn + k − 1− s)xs+1. Then we have the following.

Theorem 3. The polynomials {A(k)
n (x)}n≥1 satisfy the following recursions.



CLASSIFYING DESCENTS 3

(1) A
(k)
1 (x) = 1,

(2) For j = 1, . . . , k − 1, A
(k)
kn+j(x) = ∆kn+j(A

(k)
kn+j−1(x)) for n ≥ 0, and

(3) A
(k)
kn+k(x) = Γkn+k(A(k)

kn+k−1(x)) for n ≥ 1.

It is easy to see from Theorem 3 that we have two following recursions for the coefficients A
(k)
s,n.

For 1 ≤ j ≤ k − 1,

(3) A
(k)
s,kn+j = (kn + j − s)A(k)

s,kn+j−1 + (s + 1)A(k)
s+1,kn+j−1

and

(4) A
(k)
s,kn+k = (1 + s)A(k)

s,kn+k−1 + (kn + k − s)A(k)
s−1,kn+k−1.

There are simple formula for lowest and the highest coefficients in the polynomials A
(k)
kn+j and we can

give direct combinatorial proofs of such formulas. That is, we can prove the following.

Theorem 4. For 0 ≤ j ≤ k − 1, we have

A
(k)
0,kn+j = ((k − 1)n + j)!

∏n−1
i=0 (j + 1 + i(k − 1)),

A
(k)
n,kn+j = (n(k − 1) + j)!(k − 1)nn!.

By starting with our formulas for A
(k)
0,kn+j and iterating the recursions (3) and (4) up to get formulas

A
(k)
s,kn+j for any 0 ≤ s ≤ n, we can prove the following.

Theorem 5. For all 0 ≤ j ≤ k − 1 and all n ≥ 0, we have

A
(k)
s,kn+j =

((k − 1)n + j)!

[
s∑

r=0

(−1)s−r

(
(k − 1)n + j + r

r

)(
kn + j + 1

s− r

) n−1∏

i=0

(r + 1 + j + (k − 1)i)

]
.

As a corollary to Theorem 5 we get combinatorial proofs for two special cases of the Saalschütz’s identity,
which in terms of generalized hypergeometric functions can be written as

3F2

[
a b c
d e

; 1
]

=
(d− a)|c|(d− b)|c|
d|c|(d− a− b)|c|

where d + e = a + b + c + 1 and c is a negative integer1 (see [9] pages 43 and 126).

Corollary 1. The following identities hold:
(

n

s

)2

=
s∑

r=0

(−1)s−r

(
n + r

r

)2(2n + 1
s− r

)
;

(
n

s

)(
n + 1
s + 1

)
=

s∑
r=0

(−1)s−r

(
n + r + 1

r

)(
n + r + 1

r + 1

)(
2n + 2
s− r

)
.

We can get a second set of formulas for A
(k)
s,kn+j by starting with our formulas for A

(k)
n,kn+j and iterating

the recursions (3) and (4) down to get formulas A
(k)
s,kn+j for any 0 ≤ s ≤ n.

Theorem 6. For all 0 ≤ j ≤ k − 1 and 0 ≤ s ≤ n,

A
(k)
n−s,kn+j =(5)

((k − 1)n + j)!

[
s∑

r=0

(−1)s−r

(
(k − 1)n + j + r

r

)(
kn + j + 1

s− r

) n∏

i=1

(r + (k − 1)i)

]

1For the first identity in Corollary 1, a = n +1, b = n +1, c = −s, d = 1, and e = 2n +2− s; for the second identity there,
a = n + 2, b = n + 2, c = −s, d = 2, and e = 2n + 3− s
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Corollary 2. For all 0 ≤ j ≤ k − 1 and 0 ≤ s ≤ n,
s∑

r=0

(−1)s−r

(
(k − 1)n + j + r

r

)(
kn + j + 1

s− r

) n∏

i=1

(r + (k − 1)i) =

n−s∑
r=0

(−1)n−s−r

(
(k − 1)n + j + r

r

)(
kn + j + 1
n− s− r

) n−1∏

i=0

(r + 1 + j + (k − 1)i).

For example, the s = 0 of Corollary 2, gives the following identities where 0 ≤ j ≤ k − 1:

(k − 1)n(n!) =
n∑

r=0

(−1)n−r

(
(k − 1)n + j + r

r

)(
kn + j + 1

n− r

) n−1∏

i=0

(r + 1 + j + (k − 1)i).

3. Properties of B
(k)
n (x, z)

In a manner that is similar to the way that we derived formulas for the coefficients of A
(k)
n (x), we can

derive closed formulas for the coefficients of B
(k)
n (x) and B

(k)
n (x, z). Due to space limitations, we will simply

give a list of the theorems that we proved about the the coefficients of B
(k)
n (x) and B

(k)
n (x, z).

For 0 ≤ j ≤ k−2, let Θkn+j be the operator that sends z0xs to (1+s+(k−1)n+ j)z0xs +(n−s)z0xs+1

and z1xs to (1+s+(k−1)n+j)z1xs+(n−s−1)z1xs+1+z0xs+1. Also let Ψkn+k−1 be the operator that sends
z0xs to (s+(k−1)(n+1))z0xs +z1xs +(n−s)z0xs+1 and z1xs to (1+s+(k−1)(n+1))z1xs +(n−s)z1xs+1.
Then we have the following.

Theorem 7. For any k ≥ 2 and n ≥ 0,

(1) B
(k)
1 (x, z) = 1,

(2) B
(k)
kn+j+1(x, z) = Θkn+j(B

(k)
kn+j(x, z)) for 0 ≤ j ≤ k − 2, and

(3) B
(k)
kn+k(x, z) = Ψkn+k−1(B

(k)
kn+k−1(x, z)).

Theorem 8. For all n ≥ 0, k ≥ 2, and 0 ≤ j ≤ k − 1,

(1) B
(k)
0,kn+j = ((k − 1)n + j)!

∏n
i=1(1 + (k − 1)i),

(2) B
(k)
0,0,kn+j = ((k − 1)n + j)!

∏n
i=1((k − 1)i) = ((k − 1)n + j)!(k − 1)n(n!), and

(3) B
(k)
1,0,kn+j = ((k − 1)n + j)! ((

∏n
i=1(1 + (k − 1)i))− (k − 1)n(n!)).

Theorem 9. We have B
(k)
n,kn = B

(k)
0,n,kn = 0, and for all n ≥ 0, k ≥ 2, and 1 ≤ j ≤ k − 1,

(1) B
(k)
n,kn+j = ((k − 1)n + j)!

∏n−1
i=0 (j + (k − 1)i),

(2) B
(k)
0,n,kn+j = ((k − 1)n + j)!

∏n−1
i=0 (j + (k − 1)i), and

(3) B
(k)
1,n,kn+j = 0.

Theorem 10. For all n ≥ 0, k ≥ 2, and 0 ≤ j ≤ k − 1,

(6) B
(k)
1,n−1,kn+j = ((k − 1)n + j)!

n−1∑
p=0

(
p−1∏

i=0

(j + (k − 1)i)

) 


n−1∏

i=p+1

(1 + j + (k − 1)i)


 .

We let Ω(k, n, j) =
∑n−1

p=0

(∏p−1
i=0 (j + (k − 1)i)

)(∏n−1
i=p+1(1 + j + (k − 1)i)

)
.

Lemma 11. For all n ≥ 1, k ≥ 2, and r ≥ 0,

Ω(k, n, r) =
n−1∑
p=0

(
p−1∏

i=0

(r + (k − 1)i)

)


n−1∏

i=p+1

(1 + r + (k − 1)i)




=

(
n−1∏

i=0

(1 + r + (k − 1)i)

)
−

(
n−1∏

i=0

(r + (k − 1)i)

)
.(7)

Next we turn to general formulas for B
(k)
s,kn+j , B

(k)
0,s,kn+j and B

(k)
1,s,kn+j .
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Theorem 12. For all n ≥ 0, k ≥ 2, and 0 ≤ j ≤ k − 1,

(8) B
(k)
n−s,kn+j = ((k − 1)n + j)!

s∑
r=0

(−1)s−r

(
(k − 1)n + j + r

r

)(
kn + j + 1

s− r

) n−1∏

i=0

(r + j + (k − 1)i).

As a corollary to Theorem 12 we get combinatorial proofs for two special cases of the Saalschütz’s identity
2.

Corollary 3. The following identities hold:

n + 1
s + 1

(
n

s

)2

=
n−s∑
r=0

(−1)n−s−r

(
n + r

r

)(
n + r + 1

r

)(
2n + 2

n− s− r

)
;

(
n− 1

s

)(
n + 1
s + 1

)
=

n−s∑
r=0

(−1)n−s−r

(
n + r

r

)(
n + r − 1

r − 1

)(
2n + 1

n− s− r

)
.

Theorem 13. For all n ≥ 0, k ≥ 2, and 0 ≤ j ≤ k − 1,

(9) B
(k)
1,n−1−s,kn+j = ((k − 1)n + j)!

s∑
r=0

(−1)s−r

(
(k − 1)n + j + r

r

)(
kn + j

s− r

)
Ω(k, n, r + j).

where Ω(k, n, r) is given by (7).

Theorem 14. For all n ≥ 0, k ≥ 2, and 0 ≤ j ≤ k − 1,

B
(k)
0,n,kn+j = ((k − 1)n + j)!

∏n−1
i=0 (j + (k − 1)i) and

B
(k)
0,n−1−s,kn+j =∑s+1
r=0(−1)s+1−r

(
(k−1)n+j+r

r

)(
kn+j

s+1−r

)∏n−1
i=0 (r + j + (k − 1)i)

−∑s
r=0(−1)s−r

(
(k−1)n+k−1+r

r

)(
kn+j
s−r

) ∏n−1
i=0 (1 + r + j + (k − 1)i) for 0 ≤ s ≤ n− 1.

Theorem 15. For all k ≥ 2, n ≥ 0, 0 ≤ j ≤ k − 1, and 0 ≤ s ≤ n.

B
(k)
s,kn+j =(10)

((k − 1)n + j)!

[
s∑

r=0

(−1)s−r

(
(k − 1)n + j + r

r

)(
kn + j + 1

s− r

) n∏

i=1

(1 + r + (k − 1)i)

]

Theorem 16. For all n ≥ 0, k ≥ 2, and 0 ≤ j ≤ k − 1,
s∑

r=0

(−1)s−r

(
(k − 1)n + j + r

r

)(
kn + j + 1

s− r

) n∏

i=1

(1 + r + (k − 1)i) =

n−s∑
r=0

(−1)n−s−r

(
(k − 1)n + j + r

r

)(
kn + j + 1
n− s− r

) n−1∏

i=0

(r + j + (k − 1)i).(11)

4. Bijective proofs related to the context

The results of the previous section led to a number identities among the coefficients A
(k)
s,n, B

(k)
s,n, and

B
(k)
i,s,n for various special values of s and n. This naturally leads one to ask whether there are simple bijective

proofs of these identities. In this section, we shall list a number of these identities for which we can give
bijective proofs. Our bijections generalize some of the bijective proofs from [5].

Theorem 17. For all k ≥ 2 and n ≥ 0

A
(k)
s,kn+k−1 = A

(k)
n−s,kn+k−1 for 0 ≤ s ≤ n,

B
(k)
0,s,kn+k−1 = B

(k)
0,n−s,kn+k−1 for 0 ≤ s ≤ n, and

B
(k)
1,s,kn+k−1 = B

(k)
1,n−1−s,kn+k−1 for 0 ≤ s ≤ n− 1.

A
(k)
s,kn+k−1 = B

(k)
s,kn+k−1 for 0 ≤ s ≤ n.

2For the first identity in Corollary 3, in the Saalschütz’s identity, a = n + 2, b = n + 1, c = s−n, d = 1, and e = n + s + 3;
for the second identity there, a = n + 1, b = n, c = s− n, d = 0, and e = n + s + 2
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Theorem 18. For all k ≥ 3, n ≥ 0, and 1 ≤ j ≤ bn/kc,
A

(k)
j,kn+k−2 = B

(k)
0,j,kn+k−2 + B

(k)
1,j−1,kn+k−2.

A
(k)
j,kn+k−2(x) = A

(k)
n−j,kn+k−2(x).

Thus A
(k)
kn+k−2(x) is symmetric for n ≥ 0 and k ≥ 3.
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