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Abstract. Recently, A. Yong and the second author introduced the notion
of interval pattern avoidance as a language for describing certain local prop-
erties of Schubert varieties. In this paper we initiate the systematic study of
combinatorial properties of interval pattern avoidance and, in particular, enu-
merative properties by looking at intervals formed using permutation patterns
of length three.

We show that this new notion of pattern avoidance reduces to classical
pattern avoidance for every interval (taken with respect to Bruhat order in
the symmetric group S3) except for the interval [123, 321]. We also present
some data and ideas for enumerating permutations avoiding [123, 321].

1. Introduction

Recently, A. Yong and the second author introduced the notion of interval pattern

avoidance in connection with the study of Schubert varieties. Focusing upon the
algebro-geometric ideas behind interval pattern avoidance, they showed that it can
be used to characterize Gorensteinness [9] in addition to several other common
invariants [10]. In this paper we initiate the systematic combinatorial study of
interval pattern avoidance with an emphasis on enumerative properties by looking
at intervals formed using patterns of length three.

Lakshmibai and Sandhya [7] characterized smooth Schubert varieties as those
associated to permutations avoiding the (classical) patterns 4231 and 3412. The
appearance of pattern avoidance in this geometric setting remained a mystery until
explained by Billey and Braden [1]. However, when characterizing Schubert va-
rieties which are Gorenstein, A. Yong and the second author found that classical
pattern avoidance was insufficient, and so a generalization called Bruhat-restricted

pattern avoidance was defined for this purpose. Interval pattern avoidance (defined
in Section 2 below) is in essence a further generalization of Bruhat-restricted pat-
tern avoidance that was discovered in an attempt to give a geometric explanation
of its appearance. As explained in [10], interval pattern avoidance is in some sense
universal in characterizing singularities of Schubert varieties.

In a separate work, S. Butler and M. Bousquet-Mélou [4] used Bruhat-restricted
pattern avoidance to characterize which Schubert varieties are factorial. In the no-
tation of this paper (see Section 2), these are the Schubert varieties indexed by per-
mutations that avoid both the (classical) pattern 4231 and the interval [3142, 3412]
(or equivalently 4231 and [2413, 3412]). They were also able to give a generating
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function for enumerating the permutations in the symmetric group Sn satisfying
this avoidance condition.

In Section 2, we define interval pattern avoidance and give some of its basic
properties. This includes an interpretation in terms of the graph of a permuta-
tion that was implicit in previous work [2, 5, 6, 8] describing the singular locus of
Schubert varieties. In Section 3, we treat all intervals in S3 except for [123, 321] by
showing that they reduce to classical pattern avoidance and hence have avoidance
sets enumerated by the Catalan numbers. Finally in Section 4, we describe ongoing
work to enumerate permutations avoiding the interval [123, 321].

2. Interval Pattern Avoidance

In order to fix the terminology used for pattern avoidance in this extended ab-
stract, we begin with the following definition of permutation pattern containment:

Definition 2.1. Let σ = σ1σ2 · · ·σn ∈ Sn and π = π1π2 · · ·πm ∈ Sm with m ≤ n.
Then an embedding of π into σ is a choice of indices i1 < i2 < · · · < im such that
σij

< σik
if and only if πj < πk for each j, k = 1, 2, . . . , m.

Given an embedding of π into σ, we say that the permutation pattern π embeds into

(or, equivalently, is contained in) the permutation σ. Moreover, if no embeddings
of π into σ are possible, then we say that σ avoids π and denote the avoidance set

of all permutations σ ∈ Sn avoiding a pattern π by Sn(π). (We refer the reader to
[3] for more information about permutation patterns in general.)

Before extending this notion of pattern avoidance, we first recall the definition
of the (strong) Bruhat order:

Definition 2.2. Given two permutations σ, τ ∈ Sn, we say that σ < τ under the
Bruhat order if τ can be transformed into σ by successively interchanging any two
elements in τ that realize an embedding of the pattern 21.

In other words, σ < τ is a generating relation if σ can be obtained by “undoing”
a 21 pattern (a.k.a. an inversion) in τ . The Bruhat order ≤ on the symmetric
group Sn is then defined to be the reflexive transitive closure of these generating
relations. Equivalently, if we define the length ℓ(σ) of each permutation σ ∈ Sn to
be the number of inversions in σ, then we can also realize the partial ordering ≤
as the transitive closure of the covering relation σ ≺ τ defined by the conditions
σ = τt for some transposition t and ℓ(σ) = ℓ(τ) + 1. Denoting τ = τ1τ2 · · · τn, this
corresponds to “undoing” an embedding of 21 at positions i1 < i3 in τ when there
is no index i2 for which i1 < i2 < i3 and τi1 > τi2 > τi3 .

As usual, one can visualize the resulting partially ordered set as a Hasse diagram:

123

132 213

231 312

321
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Example 2.3. The permutation 1324 < 3412 under the Bruhat order using the
covering relations 1324 ≺ 3124 ≺ 3142 ≺ 3412.

Given two permutations σ, τ ∈ Sn with σ ≤ τ , we denote their interval in the
Bruhat order by [σ, τ ]. We can then extend the above notion of embedding to such
intervals as follows:

Definition 2.4. Suppose that π ≤ ρ ∈ Sm and σ ≤ τ ∈ Sn with m ≤ n. Then we
say that the interval [π, ρ] embeds into the interval [σ, τ ] if the following conditions
are satisfied:

(1) there is a common embedding i1 < i2 < · · · < im of π into σ and of ρ into τ
(2) the intervals [π, ρ] and [σ, τ ] are order-isomorphic.

As before, we say that the interval [σ, τ ] avoids the interval [π, ρ] if there is no
embedding of the latter into the former. Note that this reduces to the usual notion
of pattern avoidance if we set π = ρ and σ = τ since the intervals [π, ρ] = {ρ} and
[σ, τ ] = {τ} are trivially order-isomorphic.

Example 2.5.

(1) The interval [1324, 3412] embeds into the interval [41325, 43512] (as the
bold, underlined elements) since 41325 contains the pattern 1324, 43512
contains the pattern 3412, and the intervals are order-isomorphic (as one
can easily check).

(2) The interval [124356,426153] avoids the interval [1324, 3412] even though
124356 contains the pattern 1324 and 426153 contains the pattern 3412.
By computing the lengths of the permutations,

ℓ(426153)− ℓ(124356) = 7 > 3 = ℓ(3412)− ℓ(1324)

so that the intervals cannot be order-isomorphic.

The computation of lengths in Example 2.5(2) suggests the following equivalent
formulation of interval pattern embeddings.

Lemma 2.6. Let π ≤ ρ ∈ Sm and σ ≤ τ ∈ Sn with m ≤ n. Then, given a

common embedding i1 < i2 < · · · < im of π into σ = σ1σ2 · · ·σn and of ρ into

τ = τ1τ2 · · · τn, the interval [π, ρ] embeds into the interval [σ, τ ] if and only if the

following two conditions are satisfied:

(1) σi = τi for each index i /∈ {i1, i2, . . . , im}
(2) ℓ(τ) − ℓ(σ) = ℓ(ρ) − ℓ(π).

In particular, this implies that it suffices to consider only the three permutations
π, ρ, and τ in an interval embedding since σ can then be uniquely reconstructed.
Moreover, we can then extend the definition of avoidance set from a single pattern
to any interval [π, ρ] in Bruhat order as follows:

Sn([π, ρ]) = {τ ∈ Sn | [π, ρ] does not embed into [σ, τ ] for any σ ≤ τ}

Example 2.7.

(1) From Example 2.5(1), 43512 contains the interval [1324, 3412] since it em-
beds into the interval [41325, 43512].

(2) Based upon Example 2.5(2), one can see that 426153 ∈ Sn([1324, 3412]).
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(a) The forbidden region for
the interval [2143, 4231].
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(b) The forbidden region for
the interval [1324, 4231].
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(c) The forbidden region for
the interval [3412, 4321].

Figure 2.1. Examples of forbidden regions formed by intervals
taken under Bruhat order.

We close this section by giving an interpretation of interval pattern avoidance
in terms of the graphs of the two permutation defining a interval, which imply a
certain “forbidden” region. Specifically, given π = π1π2 · · ·πm and ρ = ρ1ρ2 · · · ρm,
graph the points (i, πi) as circles and (i, ρi) as solid dots in the Euclidean plane R

2.
Now connect points having the same ordinate by plain lines, and connect points
having the same abscissa by lines with arrows pointing toward the circles. Then
form a (possibly disconnected) forbidden region by shading each smallest bounded
region enclosed by plain lines and adjacent directed lines with downward-directed
lines along the left-most boundaries and upward-directed lines along the right-most
boundaries. Several examples are given in Figure 2.1.

It should be clear that a permutation τ contains the interval [π, ρ] if the forbidden
region induced by embedding ρ into τ contains no points. This is illustrated in the
analysis given in Section 3 below.

3. Short Intervals and Catalan Numbers

Now we study the interval pattern avoidance for intervals in S3. Since inverses
and reverse complements give us equivalences, we see that

#Sn([123, 132]) = #Sn([123, 213]),

#Sn([123, 231]) = #Sn([123, 312]),

#Sn([132, 321]) = #Sn([213, 321])

#Sn([312, 321]) = #Sn([231, 321]), and

#Sn([132, 312]) = #Sn([213, 231]) = #Sn([213, 312]) = #Sn([132, 231]).

From the graphical description, we see that taking reverses and complements also
preserves the sizes of interval avoidance sets, remembering that the lower end of
the interval has become the upper and vice versa. Therefore,

#Sn([123, 132]) = #Sn([231, 321]), and #Sn([123, 132]) = #Sn([231, 321]).

This analysis shows that, other than the classical avoidance classes, we have
four potentially new classes. In the remainder of this section, we reduce three of
these avoidance set, namely Sn([123, 132]), Sn([123, 312]), and Sn([132, 312]), to
classical pattern avoidance. Hence these classes are counted by Catalan numbers.
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(a) Forbidden region
reduction for [123, 132].
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(b) Forbidden region
reduction for [132, 312].
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(c) Forbidden region
reduction for [123, 312].

Figure 3.1. Forbidden region reductions for the three classes of
intervals in Sn defined by covering relations.

The analysis of the class Sn([123, 321]) is ongoing work and will be described in the
next section.

We now show that Sn([123, 132]) = Sn(132). Clearly, every permutation avoiding
132 avoids [123, 132]. It therefore remains to be shown that every permutation w
with an embedding of 132 contains an embedding of [123, 132]. Let i1, i2, i3 be an
embedding of 132. Now let i′2 be the largest index with i2 ≤ i′2 < i3 such that
wi′

2
> wi3 . Then i1, i

′

2, i3 will be an embedding of 132, and ℓ(w · (i′2 ↔ i3)) =

ℓ(w) − 1, since, by construction, there does not exist k such that i′2 < k < i3 and
wi′

2
> wk > wi3 . (Here (i′2 ↔ i3) denotes the transposition interchanging i′2 and

i3.) This argument is summarized by Figure 3.1(a).
The other two cases are similar as summarized in Figure 3.1(b,c). For a permu-

tation with an embedding i1, i2, i3 of 312, we can choose i′2 minimal so that i1 < i′2
and wi′

2
< wi3 , then choose i′1 maximal so that i′1 < i′2 and wi′

1
> wi3 . Then

i′1, i
′

2, i3 is an embedding of [132, 312]. To get an embedding of [123, 312], we can
now choose i′3 minimal such that i′3 > i′2 and wi′

3
< wi′

1
.

One might naively guess that similar reductions apply to all intervals of length
one, but this is not the case. For example, 53124 contains an embedding of 4123
but is nonetheless in Sn([1423, 4123]).

4. The Interval [123, 321]

Given the analysis in Section 3 above, the last remaining case in analyzing in-
terval avoidance for patterns in S3 is the single interval [123, 321] of length three.
This interval generates the following forbidden region:
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We have been able to compute the value of #Sn([123, 321]) for n = 1, 2, . . . , 12 as

1, 2, 5, 15, 51, 194, 810, 3675, 17935, 93481, 517129, 3021133.

However, our attempts at providing a combinatorial interpretation for this sequence

have so far been unsuccessful. Since it clear that Sn(321) ⊂ Sn([123, 321]), our
current efforts involve trying to characterize permutations containing the pattern
321 that are also in Sn([123, 321]). The first few values of #(Sn([123, 321])\Sn(321))
for n = 4, . . . , 12 are

1, 9, 62, 381, 2245, 13073, 76685, 458343, 2813121.

One possibility for trying to directly count these permutations is to filter the
avoidance set Sn([123, 321]) according to the largest m for which the permutation
has an embedding of m23 · · · (m − 1)1, or perhaps using a finer filtration using
more patterns. It is not difficult to see that there are 4m − 8 distinct patterns
in Sm+1([123, 321]) containing m23 · · · (m − 1)1, but we have not yet been able to
push this analysis through. We have also found necessary and sufficient conditions
describing when no left-to-right minimum is involved in an embedding of [123, 321],
but this places significant restrictions on the further structure of the permutation,
making a recursive analysis appear quite difficult.
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