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Abstract. Given a sequence of integers of length j, τ , we say that a permutation σ has a τ -k-match starting
at position i, if the elements in position i, i+1, . . . , i+j−1 in σ have the same relative order as the elements
of τ and belong to the same equivalence class mod k, element by element, for some k ≥ 2. If Υ is set of

sequences of length j, then we say that a permutation σ has an Υ-k-match starting at position j if it has a
τ -k-match at position j for some τ ∈ Υ. Some recent papers have studied the distribution of τ -k-matches
and Υ-k-matches in permutations. In this paper, we provide q-analogues to many previous formulas proved
in this area.

1. Introduction

Given any sequence σ = σ1 · · ·σn of distinct integers, we let red(σ) be the permutation that results
by replacing the i-th largest integer that appears in the sequence σ by i. For example, if σ = 2 7 5 4,
then red(σ) = 1 4 3 2. Given a permutation τ in the symmetric group Sj , we define a permutation
σ = σ1 · · ·σn ∈ Sn to have a τ -match at place i provided red(σi · · ·σi+j−1) = τ . Let τ -mch(σ) be the
number of τ -matches in the permutation σ. To prevent confusion, we note that a permutation not having
a τ -match is different than a permutation being τ -avoiding. A permutation is called τ -avoiding if there are
no indices i1 < · · · < ij such that red[σi1 · · ·σij

] = τ . For example, if τ = 2 1 4 3, then the permutation
3 2 1 4 6 5 does not have a τ -match but it does not avoid τ since red[2 1 6 5] = τ .

In the case where |τ | = 2, then τ -mch(σ) reduces to familiar permutation statistics. That is, if σ =
σ1 · · ·σn ∈ Sn, let Des(σ) = {i : σi > σi+1} and Rise(σ) = {i : σi < σi+1}. Then it is easy to see that
(2 1)-mch(σ) = des(σ) = |Des(σ)| and (1 2)-mch(σ) = rise(σ) = |Rise(σ)|.

A number of recent publications have analyzed the distribution of τ -matches in permutations. See, for
example, [EN03, Kit03, Kit]. A number of interesting results have been proved. For example, let τ -nlap(σ)
be the maximum number of non-overlapping τ -matches in σ where two τ -matches are said to overlap if they
contain any of the same integers. Then Kitaev [Kit03, Kit] proved the following.

Theorem 1.1.

(1.1)
∑

n≥0

tn

n!

∑

σ∈Sn

xτ-nlap(σ) =
A(t)

(1− x) + x(1 − t)A(t)

where A(t) =
∑

n≥0
tn

n! |{σ ∈ Sn : τ-mch(σ) = 0}|.

In other words, if the exponential generating function for the number of permutations in Sn without any
τ -matches is known, then so is the exponential generating function for the entire distribution of the statistic
τ -nlap.

Mendes and Remmel [MR05] proved a number of extensions of Kitaev’s result. For example, sup-
pose Υ ⊆ Sj. We say that a permutation σ = σ1 · · ·σn ∈ Sn has an Υ-match at place i provided
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red[σi · · ·σi+j−1] ∈ Υ. Let Υ-mch(σ) and Υ-nlap(σ) be the number of Υ-matches and non-overlapping
Υ matches in σ, respectively.

Theorem 1.2. [MR05]

∞
∑

n=0

tn

[n]!

∑

σ∈Sn

xΥ−nlap(σ)qinv(σ) =
AΥ

q (t)

(1 − x) + x(1− t)AΥ
q (t)

.(1.2)

where AΥ
q (t) =

∑

n≥0
tn

[n]!

∑

σ∈Sn:Υ-mch(σ)=0 qinv(σ).

More recently, a number of papers [KR05, KR06, L06] have considered a more refined pattern matching
condition where we take into account conditions involving equivalence mod k for some integer k ≥ 2. That
is, suppose we fix k ≥ 2 and we are given some sequence of distinct integers τ = τ1 · · · τj . Then we say that a
permutation σ = σ1 · · ·σn ∈ Sn has a τ -k-equivalence match at place i provided red(σi · · ·σi+j−1) = red(τ)
and for all s ∈ {0, . . . , j − 1}, σi+s = τ1+s mod k. For example, if τ = 1 2 and σ = 5 1 7 4 3 6 8 2, then σ

has τ -matches starting at positions 2, 5, and 6. However, if k = 2, then only the τ -match starting at position
5 is a τ -2-equivalence match. Later, it will be explained that the τ -match starting a position 2 is a (1 3)-2-
equivalence match and the τ -match starting a position 6 is a (2 4)-2-equivalence match. Let τ -k-emch(σ) be
the number of τ -k-equivalence matches in the permutation σ. Let τ -k-enlap(σ) be the maximum number of
non-overlapping τ -k-equivalence matches in σ where two τ -matches are said to overlap if they contain any
of the same integers.

More generally, if Υ is a set of sequences of distinct integers of length j, then we say that a permu-
tation σ = σ1 · · ·σn ∈ Sn has a Υ-k-equivalence match at place i provided there is a τ ∈ Υ such that
red(σi · · ·σi+j−1) = red(τ) and for all s ∈ {0, . . . , j − 1}, σi+s = τ1+s mod k. Let Υ-k-emch(σ) be the
number of Υ-k-equivalence matches in the permutation σ and Υ-k-enlap(σ) be the maximum number of
non-overlapping Υ-k-equivalence matches in σ.

Then one can study the polynomials

Tτ,k,n(x) =
∑

σ∈Sn

xτ-k-emch(σ) =

n
∑

s=0

T s
τ,k,nxs and(1.3)

UΥ,k,n(x) =
∑

σ∈Sn

xΥ-k-emch(σ) =
n

∑

s=0

Us
Υ,k,nxs.(1.4)

In particular, [KR05, KR06, L06] focused on certain special cases of these polynomials where we consider
only patterns of length 2. That is, fix k ≥ 2 and let Ak equal the set of all sequences (a b) such that
1 ≤ a < b ≤ 2k where there is no lexicographically smaller sequence x y having the property that x ≡ a

mod k and y ≡ b mod k. For example,

A4 = {1 2, 1 3, 1 4, 1 5, 2 3, 2 4, 2 5, 2 6, 3 4, 3 5, 3 6, 3 7, 4 5, 4 6, 4 7, 4 8}.

Let Dk = {b a : a b ∈ Ak} and Ek = Ak ∪Dk. Thus Ek consists of all k-equivalence patterns of length 2
that we could possibly consider. Note that if Υ = Ak, then Υ-k-emch(σ) = rise(σ) and if Υ = Dk, then
Υ-k-emch(σ) = des(σ).

Kitaev and Remmel [KR05, KR06] found explicit formulas for the coefficients Us
Υ,k,n in certain special

cases. In particular, they studied descents according to the equivalence class mod k of either the first or
second element in a descent pair. That is, for any set X ⊆ {0, 1, 2, . . .}, define

•
←−−
DesX(σ) = {i : σi > σi+1 & σi ∈ X} and

←−
desX(σ) = |

←−−
DesX(σ)|

•
−−→
DesX(σ) = {i : σi > σi+1 & σi+1 ∈ X} and

−→
desX(σ) = |

−−→
DesX(σ)|

In [KR06], Kitaev and Remmel studied the polynomials

(1) A
(k)
n (x) =

∑

σ∈Sn
x
←−
deskN (σ) =

∑⌊n
k
⌋

j=0 A
(k)
j,nxj and

(2) B
(k)
n (x, z) =

∑

σ∈Sn
x
−→
deskN (σ)zχ(σ1∈kN) =

∑⌊n
k
⌋

j=0

∑1
i=0 B

(k)
i,j,nzixj .

where kN = {0, k, 2k, . . .}. Again both A
(k)
n (x) and B

(k)
n (x, z) are special cases of UΥ,k,n(x). Then, for

example, Kitaev and Remmel [KR06] proved there are two different closed formulas for the coefficients

A
(k)
s,kn+j .
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Theorem 1.3. For all 0 ≤ j ≤ k − 1 and all n ≥ 0, we have

A
(k)
s,kn+j = ((k − 1)n + j)!

s
∑

r=0

(−1)s−r

(

(k − 1)n + j + r

r

)(

kn + j + 1

s− r

) n−1
∏

i=0

(r + 1 + j + (k − 1)i)

= ((k − 1)n + j)!

n−s
∑

r=0

(−1)n−s−r

(

(k − 1)n + j + r

r

)(

kn + j + 1

n− s− r

) n
∏

i=1

(r + (k − 1)i)

Liese [L06] extended these results as follows. Let k ≥ 2 and Υ = {(x1, y1), (x2, y2), . . . , (xt, yt)} be a
subset of Ak such that for all i, j yi ≡ yj mod k. Then we define y = min({y1, . . . , yt}) and α = |{xi : xi <

y}|. We then let AscΥ,k(σ) = {i : σi < σi+1 & σi ≡ xj mod k & σi+1 ≡ yj mod k for some (xj , yj) ∈ Υ}.
We shall call the elements of AscΥ,k(σ) the Υ-ascents of σ and we let ascΥ,k(σ) = |AscΥ,k(σ)|. Then for all
n ≥ 0 and j ∈ {0, . . . , k − 1}, we define

(1.5) UΥ,k,kn+j(x) =
∑

σ∈Skn+j

xascΥ,k(σ) =

n
∑

s=0

Us
Υ,k,kn+jx

s.

Then Liese [L06], proved the following.

Theorem 1.4. For all y − k ≤ j ≤ y − 1 and all n ≥ s such that kn + j > 0, we have

Us
Υ,k,kn+j = ((k − 1)n + j)!

[

s
∑

r=0

(−1)s−r

(

(k − 1)n + r + j

r

)(

kn + j + 1

s− r

)

Γ(r, j, n)

]

Us
Υ,k,kn+j = ((k − 1)n + j)!

[

n−s
∑

r=0

(−1)n−s−r

(

(k − 1)n + r + j

r

)(

kn + j + 1

n− s− r

)

Ω(r, n)

]

where Γ(r, j, n) =

n−1
∏

i=0

((k − 1)n + r + j + 1− α− i(|Υ| − 1)) and Ω(r, n) =

n−1
∏

i=0

(r + α + i(|Υ| − 1)).

2. q-Analogues

While we have been able to provide q-analogues for all of the above mentioned formulas, we will first take
a look at one of the simplest formulas and then one of the more general formulas. In the case where k = 2
and X = E = {0, 2, 4, . . .} is the set of even numbers, Kitaev and Remmel [KR05] proved that the formulas

for A
(2)
n (x) =

∑

σ∈Sn
x
←−
desE simplify considerably. That is, if we let Rn(x) = A

(2)
n (x) =

∑⌊n
2 ⌋

s=0 Rs,nxs. Let

∆2n+1 be the operator which sends xs to sxs−1 + (2n − s + 1)xs and Γ2n+2 be the operator that sends xs

to (s + 1)xs + (2n− s + 1)xs+1. Then Kitaev and Remmel [KR05] proved the following.

Theorem 2.1. The polynomials Rn(x)n≥1 satisfy the following recursions.

(1) R1(x) = 1,
(2) R2n+1(x) = ∆2n+1(R2n(x)), and

(3) R2n+2(x) = Γ2n+2(R2n+1(x)).

This fact gave rise to the following recursions for Rs,n(x).

Rs,2n+1 = (s + 1)Rs+1,2n + (2n− s + 1)Rs,2n(2.1)

Rs,2n+2 = (s + 1)Rs,2n+1 + (2n− s + 2)Rs−1,2n+1(2.2)

It was through these recursions that Kitaev and Remmel were able to show that

Rk,2n =

(

n

k

)2

(n!)2, and(2.3)

Rk,2n+1 =
1

k + 1

(

n

k

)2

((n + 1)!)2.(2.4)

To prove q-analogues of the results, we introduce q-analogues of the operators ∆ and Γ. Let [n]q =

1+q+·+qn−1, [n]q! = [1]q · · · [n]q, and
[

n

k

]

q
=

[n]q!
[k]q ![n−k]q ! . Then we let ∆q

2n+1 be the operator which sends xs to
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[s]q xs−1 +qs [2n− s + 1]q xs and Γq
2n+2 be the operator that sends xs to [s + 1]q xs +qs+1 [2n− s + 1]q xs+1.

Next we define q-analogues of the polynomials Rn(x), Rq
n(x)n≥1 =

∑n

s=0 Rq
s,nxs, via the following recursions.

(1) R
q
1(x, q) = 1,

(2) R
q
2n+1(x, q) = ∆q

2n+1(R
q
2n(x)), and

(3) R
q
2n+2(x, q) = Γq

2n+2(R
q
2n+1(x)).

This fact gives rise to the following recursions for the coefficients Rq
s,n(x).

R
q
s,2n+1 = [s + 1]q R

q
s+1,2n + qs [2n− s + 1]q R

q
s,2n(2.5)

R
q
s,2n+2 = [s + 1]q R

q
s,2n+1 + qs [2n− s + 2]q R

q
s−1,2n+1(2.6)

We can then show that the solution to these recursions are

Theorem 2.2.

R
q
k,2n = q(

k

2)
[

n

k

]

q

2

([n]q!)
2, and

R
q
k,2n+1 =

q(
k+1
2 )

[k + 1]q

[

n

k

]

q

2

([n + 1]q!)
2.

The operators ∆q
2n+1 and Γq

2n+2 give rise to a natural q-statistic on permutations which is similar to the
major index statistic. For any permutation σ ∈ Sn, maj(σ) =

∑

i∈Des(σ) i. Foata [F68] showed that the

maj statistic satisfies some simple recursions. That is, for any permutation τ = τ1 . . . τn−1 ∈ Sn−1, we label
the spaces where we can insert n into τ to get a permutation in Sn as follows.

(1) Label the space following τn−1 with 0.
(2) Next label the spaces that lie between descents τi > τi+1 from right to left with the integers

1, . . . , des(τ).
(3) Finally label the remaining spaces from left to right with the integers des(τ) + 1, . . . , n.

Thus, for example, if τ = 3 9 2 8 5 4 1 6 7, then spaces are labeled as follows:

5369427835241186970.

Then Foata proved that if τ (i) is the result of inserting n into the space labeled i, then for all i ∈ {0, . . . , n},

maj(τ (i)) = i + maj(τ).

In our case, we can use a similar labeling procedure to define a statistic Emaj such that Rq
n(x, q) =

∑

σ∈Sn
qEmaj(σ)x

←−
desE . Given any permutation σ = σ1 · · ·σ2n ∈ S2n where

←−
desE(σ) = s, we first label the

possible spaces where we can insert 2n + 1 to get a permutation in S2n+1 such that
←−
desE(σ) = s − 1 with

the integers from 0 to s − 1 from right to left. These are precisely the spaces that lie between descents
σi > σi+1 where σi is even. We then label the remaining spaces from left to right with the integers from

s to 2n. If σ = σ1 · · ·σ2n+1 ∈ S2n+1 where
←−
desE(σ) = s, we first label the spaces such that we can insert

2n + 2 to get a permutation in S2n+2 where
←−
desE(σ) = s with the integers from 0 to s from right to left. In

this case, the first such space is the space following σ2n+1 and the remaining spaces are the spaces that lie
between descents σi > σi+1 where σi is even. We then label the remaining spaces from left to right with the
integers from s + 1 to 2n + 1. We will call this labeling the E-canonical labeling of σ. For example, suppose
σ = 3 9 2 8 5 4 1 6 7. Then the E-canonical labeling of σ is

3349526825741186970.

Given σ ∈ Sn−1, we define (σ ↓ k) to be the permutation in Sn that is obtained from σ by placing n in
the position that was labeled with k under the E-canonical labeling.

Given σ ∈ Sn where σ = (τ ↓ k) for some τ ∈ Sn−1, we now recursively define Emaj(σ) as follows.

(1) If n = 1, Emaj(σ) = 0.
(2) If n > 1, Emaj(σ) = k + Emaj(τ).
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With this labeling scheme, it is clear that

n+1
∑

j=0

qEmaj((σ↓j)) = [n + 1] qEmaj(σ)

and thus
∑

σ∈Sn

qEmaj(σ) = [n]!.

In other words, the statistic is Mahonian. Then we can easily prove that

Theorem 2.3.

Rq
n(x) =

∑

σ∈Sn

x
←−
desE(σ)qEmaj(σ) =

n
∑

k=0

R
q
k,nxk.

We will now turn to a more general q-analogue. Let us examine the q-analogue of the polynomials
U{(1k)},k,n(x). For j = 1, . . . , k− 1, let ∆kn+j be the operator which sends xs to sxs−1 + (kn + j − s)xs and

Γkn+k be the operator that sends xs to ((k− 1)n + k + s− 1)xs + (n− s + 1)xs+1. Then one can easily show
that the polynomials U{(1k)},k,n(x) are defined by the following recursions.

(1) U{(1k)},k,1(x) = 1,
(2) For j = 1, . . . , k − 1, U{(1k)},k,kn+j(x) = ∆kn+j(U{(1k)},k,kn+j−1(x)), and
(3) U{(1k)},k,kn+k(x) = Γkn+k(U{(1k)},k,kn+k−1(x)).

We then define q-analogue these recursions as follows. For j = 0, . . . , k − 2 let ∆q
kn+j be the operator

which sends xs to [s]qx
s−1 + qs[kn + j − s]qx

s and Γkn+k be the operator that sends xs to [(k − 1)n + k +

s − 1]qx
s + q(k−1)n+k+s−1[n − s + 1]xs+1. Then we define q-analogues of the polynomials U{(1k)},k,n(x) by

the following recursions.

(1) U
q

{(1k)},k,1(x, q) = 1,

(2) For j = 1, . . . , k − 1, U
q

{(1k)},k,kn+j
(x, q) = ∆q

kn+j(U
q

{(1k)},k,kn+j−1(x, q)), and

(3) U
q

{(1k)},k,kn+k
(x, q) = Γq

kn+k(U q

{(1k)},k,kn+k−1(x, q)).

Then we can show that if U
q

{(1k)},k,kn+j
(x, q) =

∑n

s=0 U
s,q

{(1k)},k,kn+j
xs, then we have the following.

Theorem 2.4. For all 0 ≤ j ≤ k − 1 and all n such that kn + j > 0, we have

U
s,q

{(1k)},k,kn+j
=

[(k − 1)n + j]q!

s
∑

r=0

(−1)s−rq(
s

2)−(r

2)−r(s−r) [(k − 1)n + j + r]
n

q

[

(k − 1)n + j + r

r

]

q

[

kn + j + 1

s− r

]

q

and

U
s,q

{(1k)},k,kn+j
=

[(k − 1)n + j]!

n−s
∑

r=0

(−1)n−s−rq(
n−s

2 )−(r

2)−r(n−s−r)−(n+1
2 )+s(kn+j) [1 + r]

n

q

[

(k − 1)n + j + r

r

]

q

[

kn + j + 1

n− s− r

]

q

We can give a labeling procedure similar to one described for Emaj to recursively define a statistic
(1k)maj such that U

q

{(1k)},k,kn+j
(x, q) =

∑

σ∈Skn+j
q(1k)maj(σ)xasc{(1k)},k(σ).

It is interesting to note some differences between the proofs for the formulas of the above q-analogues
and their respective q = 1 case. In the q = 1 case, we can give direct proofs of the extreme coefficients. That
is, we can give direct combinatorial proofs of the fact that

U0
{(1k)},k,kn+j = ((k − 1)n + j)! ((k − 1)n + j)

n
and

Un
{(1k)},k,kn+j = ((k − 1)n + j)!

Then the two formulas for Us
{(1k)},k,kn+j

arise by, first, starting with the formulas for U0
{(1k)},k,kn+j

and

using the recursion to iterate up to the formulas for Us
{(1k)},k,kn+j

and, second, starting with the formulas

for Un
{(1k)},k,kn+j

and using the recursions to iterate down to the formulas for Un−s
{(1k)},k,kn+j

.
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In the general q-case, the strategy does work since we can not give direct combinatorial proofs of both of
the formulas for the coefficients U

0,q

{(1k)},k,kn+j
and U

n,q

{(1k)},k,kn+j
using our statistics q(1k)maj(σ)xasc{(1k)},k(σ).

Thus we have to prove our formulas by assuming that they hold at level kn + j and use the recursions to
prove that they hold at level kn + j + 1 for j = 0, . . . , k− 1 and n ≥ 0. In such a case, one has to be careful
of what happens at the extreme cases, U

−1,q

{(1k)},k,kn+j
and U

n+1,q

{(1k)},k,kn+j
where the answers must be 0 by our

definitions, but where our formulas still make sense. That is, typically, our formulas look like a sum from
either 0 to s or from 0 to n− s. So, in one of the extreme cases, we can interpret the sum in our formula as
the empty sum and is therefore zero by convention. In the other extreme case, we need to show explicitly
that our formulas are zero when they are summing from 0 to n + 1. It turns out that in such cases, we
can give a direct combinatorial proof that the desired coefficient is 0. For example, we can give a direct
combinatorial proof of the following.

Theorem 2.5. For all positive integers k, n, j, z1, . . . , zn and any function θ(r) where kn + j > 0,
0 < zi < (k − 1)n + j, and θ(r + 1) = θ(r) − (n− r),

n+1
∑

r=0

(−1)n+1−rqθ(r)
n

∏

i=1

[zi + r]q

[

kn + j + 1

(k − 1)n + j, r, n + 1− r

]

q

= 0.

In [L06], Liese provided another formula for Us
{(1k)},k,kn+j

, which was obtained by directly applying

inclusion-exclusion. That is, he showed that

Us
{(1k)},k,kn+j =

n
∑

r=s

(−1)r−s

(

r

s

)

(kn + j − r)!Sn+1,n+1−r

where Sn,k is the Stirling number of the second kind, i.e. Sn,k is the number of set partitions of {1, . . . , n}
into k parts. We conjecture a q-analogue of this formula as well.

U
s,q

{(1k)},k,kn+j
=

n
∑

r=s

(−1)r−sq(
n+1−s

2 )+r((k−1)n+j)−(n+1
2 )+ns

[

r

s

]

q

[kn + j − r]q!S
q
n+1,n+1−r

where S
q
n,k is the q-Stirling number of the second kind that defined by the following recursion.

S
q
0,0 = 1, S

q
n,k = 0 if k < 0 or k > n, and,

S
q
n,k = S

q
n−1,k−1 + [k]q S

q
n−1,k if 0 ≤ k ≤ n.
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