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Recall that two finite sequences a and b are order isomorphic if a and b have
the same length and ai ≤ aj ⇐⇒ bi ≤ bj for all i and j. If σ ∈ [k]n is a string
of n letters over the alphabet [k] = {1, . . . , k} and τ ∈ [l]m is a map from [m]
onto [l] (i.e. τ contains all letters from 1 to l), then we say that σ contains the
pattern τ if σ has a subsequence order isomorphic to τ . If σ does not contain
τ , then we say that σ avoids τ .

In his thesis [1], Burstein used analytic methods to find the generating func-
tion for multiset permutations on an alphabet of size k which simultaneously
avoid the patterns 123 and 132. Last year [2], Mansour gave a beautiful bi-
jective proof that {132, 123}-avoiding words and {213, 231}-avoiding words on
[k]n are equinumerous. In this paper, I give a purely bijective proof of these
results. First, I detail a bijection between {132, 123}-avoiding permutations,
and 2-colored decreasing sequences. I believe there is also a bijection between
{231, 213}-avoiding words and 2-colored increasing sequences. The composition
of these two maps yields a new bijection between the two sets of restricted
words.

Theorem. [1] Let Sk(n) be the number of words σ ∈ [k]n (k ≥ 0) which simul-
taneously avoid the patterns 123 and 132, and let Fk(x) =

∑
Sk(n)xn. Then

Fk(x) =
1

2(1− x)(1− 2x)k−1
+

1
2(1− x)

.

First, notice that for k ≤ 2, all words on [k]n avoid 123 and 132, so F0(x) = 1,
F1(x) = 1

1−x , and F2(x) = 1
1−2x , which are all of the desired form. Now, we

turn our attention to general k, and consider the following proposition.

Proposition. The number of {123, 132}-avoiding words on [k]n with at least
one k is

∑n−1
i=0

(
k−2+i
k−2

)
2i.
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Proof. We prove the proposition with a bijection.
By the standard “stars and bars” computation, the number of decreasing

sequences of length i on the alphabet [k − 1] is
(
k−2+i
k−2

)
. Thus,

∑n−1
i=0

(
k−2+i
k−2

)
2i

counts the number of 2-colored decreasing sequences on [k−1] of length at most
n− 1.

Now we exhibit a bijection from the set of 2-colored decreasing sequences
on [k − 1] of length at most n− 1 to {123, 132}-avoiding words on [k]n with at
least one k.

Algorithm 1.
Input: s = (s1, ..., sm), a 2-colored decreasing sequence on [k − 1] of length m
(< n).
Output: w ∈ [k]n, a {123, 132}-avoiding word with at least one k.

max:=k
w:=k

for i from 1 to m do
l:=length(w)
if color(si)=R then
w:=w1, ..., wl, si

if color(si)=L, si−1 > si, and color(si−1)=R then
w:=w1, ..., wl−1, si, wl

max:=si−1

if color(si)=L and there does not exist sj = si with j < i
and color(sj)=R then
w:=w1, ..., wl−1, si, wl

if color(si)=L and there exists sj = si with j < i and color(sj)=R then
w:=w1, ..., wl−1,max, wl

If length(w) < n then
w := w,maxn−l.

Return w.

Example 1. In general, the 2-coloring of the sequence s instructs us whether
to insert si to the right (R) or the left (L) of the last letter of w with a little
added bookkeeping.
Let k = 3 and n = 5.
input: (2(R),1(L),1(R),1(L))
First, initialize w = 3, max := 3.
Since s1 = 2 and color(s1) = R, w = 32, max := 3.
Since s2 = 1 and color(s2) = L, w = 312, max := 2.
Since s3 = 1 and color(s3) = R, w = 3121, max := 2.
Since s4 = 1 and color(s4) = L, w = 31221, max := 2.
Since all entries of s have been exhausted and w has length n, w is the desired
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{123, 132}-avoiding word on [3]5 with at least one 3.

To see that the algorithm provides a bijection, it is enough to see that it
has an inverse. Appealing to the general intuition that Algorithm 1 places an
R-colored (resp. L-colored) entry of a decreasing sequence to the right (resp.
left) of the last entry of the word, an inverse map should reverse this process.
All letters to the left of the first k are colored with L. After this, the inverse map
finds the largest possible uncolored entry to add to the decreasing sequence and
labels it R, labelling everything smaller and to the left of this entry with an L.
Consider the following:

Algorithm 2.
Input: w ∈ [k]n, a {123, 132}-avoiding word with at least one k.
Output: D, a decreasing sequence on [k−1] of length m (< n) and C, a sequence
of colors of the same length.

C:=the empty word
D:=the empty word
i:=1

while wi 6= k
D:=D,wi, C:=C,L, i:=i+1

while there are uncolored entries of w
Let m:=min(max(uncolored entries of w),last entry of D, k-1).
Let curr be the position of the first uncolored occurrence of m.
D:=D, wcurr, C:=C, R

Let wj1 , ..., wjc be the uncolored elements of w to the left of curr
(other than the first occurrence of k)
for i from 1 to c
If wji

≤ wcurr then
D:=D, wj , C:=C, L

If wji > wcurr then
D:=D, wcurr, C:=C, L

If all elements of w have been colored, or all remaining entries of w
are larger than the last entry of D, then return [D,C].

Example 2. Let k = 3 and w = 31221.
There are no entries to the left of the first 3, so m := min{max{1, 2, 2, 1}, 2} = 2.
w3 is the first uncolored occurence of m, and w2 is the only uncolored element
to the left of w3. Thus, D=[2,1], C=[R,L].
Now, m := min{max{2, 1}, 1} = 1.
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w5 is the first uncolored occurence of m and w4 is the only uncolored element
to the left of w5. Thus, D=[2,1,1,1] C=[R,L,R,L].

We have exhibited an inverse map for Algorithm 1. Now, we check that
Algorithm 1 always maps 2-colored decreasing sequences to {123, 132}-avoiding
words with at least one k. It is clear from the algorithm that w contains at least
one k.

To see that w is 132-avoiding, recall that s is a decreasing sequence and
that the algorithm inserts each entry of s into w as either the last, or next to
last entry of w. Assume that si and si+1 form the 32 part of a 132 pattern.
Then, some entry sk, k < i must play the role of 1 in the 132 pattern, which
contradicts the fact that s is decreasing. Otherwise, si+1 plays the role of the
1 in the 132 pattern, which implies that si+1 was inserted earlier than the next
to last element of w, a contradiction.

To see that w is 123-avoiding, notice that the only way for two entries of s
to be inserted into w in increasing order is if si > si+1, and color(si+1) = L,
color(si) = R. However, in this case, the algorithm reassigns max := si, and no
entry larger than max is inserted into w during the rest of the algorithm. Thus
it is impossible to create a 123 pattern.

Now, it is clear that the algorithms provide a bijection between the set of
2-colored decreasing sequences on [k−1] of length at most n−1 and {123, 132}-
avoiding words on [k]n with at least one k.

With this proposition, we are in a position to prove the following lemma,
which, with induction, proves the theorem.

Lemma. [2] Let Wk(n) be the number of words σ ∈ [k]n which simultaneously
avoid the patterns 123 and 132 and contain at least one k, and let Gk(x) =

x
(1−x)(1−2x)k−1 . Then,

∑
Wk(n)xn = Fk(x)− Fk−1(x) = Gk(x).

Proof.

Gk(x) =
x

(1− x)(1− 2x)k−1
=

x

1− x

1
(1− 2x)k−1

=
x

1− x

∑
n≥0

(
k − 2 + n

k − 2

)
2nxn

The coefficient of xn in Gk(x) is
∑n−1

i=0

(
k−2+i
k−2

)
2i. By the proposition, this is

the number of {123, 132}-avoiding words on [k]n with at least one k, so we are
done.

A similar bijection between {213, 231}-avoiding words on [k]n and 2-colored
sequences is in progress.
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