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Since Noonan [3], there has been considerable interest in counting permutations with a
bounded number of copies of a pattern. The most general result to date — proved independently
by Bóna [1] and Mansour and Vainshtein [2] — states that for any fixed r, the number of
permutations with at most r copies of 132 has an algebraic generating function; indeed, these
generating functions lie in C(x,

√

1 − 4x).
While these permutations can be said to “almost avoid” 132, there is a more natural for-

malization of this term. We say that π almost avoids β if one can remove a single entry from π

to obtain a β-avoiding permutation (and thus it would be more accurate to say that π avoids
or almost avoids β). Thus the permutations with at most 1 copy of 132 almost avoid 132 in
this sense, but there are also permutations with arbitrarily many copies of 132 which almost
avoid 132.

Using the Robinson-Schensted-Knuth correspondence, we give a formula for the number of
permutations that almost avoid 123. In the case of 132 we are able to give a generating function
via a lengthy case-by-case analysis.
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