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A story . . .

A long time ago on an island far far away . . .

Herb Wilf talked about the Baik, Deift, Johansson result on the
distribution of the length of the longest increasing subsequence in a
random permutation and asked:

What can be said about the distribution of the length of the
longest increasing sequence in a permutation chosen at
random from a pattern class A?
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Longest increasing subsequences

(Conjecture: Ulam, 1960) The length of the longest increasing
subsequence of a random permutation from Sn is (asymptotically
in expectation) c

√
n.
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Longest increasing subsequences

(Conjecture: Ulam, 1960) The length of the longest increasing
subsequence of a random permutation from Sn is (asymptotically
in expectation) c

√
n.

(Hammersley, 1972) That’s true and (conjecture) c = 2.

(Various, 1977) That’s true.

(Odlyzko and Rains, 1985+) Simulation (conjecture) the length is
tightly concentrated around the mean (i.e. the variance is small).

(Frieze, Bollobas and Brightwell, 1991-92) That’s true.

(Baik, Deift and Johansson, 1999) We know everything about the
distribution.
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A diversion

The rest of the talk is not about increasing subsequences. So, if you
want to keep thinking about them, try this:
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A diversion

The rest of the talk is not about increasing subsequences. So, if you
want to keep thinking about them, try this:

I have n cards numbered 1 through n and I’ve shuffled them
well. I will deal them all out one at a time, and each time I
deal a card you can choose to “accept” it provided that the
cards you accept form an increasing sequence. Playing
optimally (i.e. trying to accept as many cards as possible)
how many cards do you expect to accept?
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The wrong end of the stick

Somehow I remembered Herb’s question as:

What can be said about the distribution of the length of the
longest subsequence belonging to a given pattern class A in
a random permutation?

I’ll tell the early (i.e. easy) parts of this story and, in the tradition of the
area, add a conjecture of my own.
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Notation

Throughout, A is some proper, infinite pattern class (i.e. set of
permutations closed under taking subpermutations).
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sA = lim sup
n→∞

|A ∩ Sn|1/n .
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Notation

Throughout, A is some proper, infinite pattern class (i.e. set of
permutations closed under taking subpermutations).

The growth rate, or Stanley-Wilf limit of A:

sA = lim sup
n→∞

|A ∩ Sn|1/n .

Πn is a random variable uniformly distributed on Sn. LA(Πn) is the
random variable whose value is the length of the longest
subsequence of (an observation of) Πn whose pattern belongs to
A.
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Preliminaries

Lemma

Pr
(

LA(Πn) ≥ 2e
√

sAn
)

< e−2e
√

sAn.
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Preliminaries

Lemma

Pr
(

LA(Πn) ≥ 2e
√

sAn
)

< e−2e
√

sAn.

This is simply a matter of counting – in expectation fewer than
e−2e

√
sAn subsequences of length ⌈2e

√
sAn⌉ of a permutation of

length n can belong to A. Therefore, this is an upper bound for the
probability that one exists.
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Expectation

Theorem
If A is sum or difference closed, then there is a constant cA with
1 ≤ cA ≤ e2sA such that:

lim
n→∞

E (LA(Πn))√
n

= 2
√

cA.

The proof is (not just “essentially is”) the same as Hammersley’s for
the class I of increasing permutations.
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Concentration

Theorem
For α > 1/3 and β < min(α, 3α − 1)

Pr (|LA(Πn) − E LA(Πn)| ≥ nα) < exp(−nβ).

This time the proof is Frieze’s (in fact he foreshadows the possibility of
such extensions at the end of his paper).
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Known values

Let Ik be the class of permutations avoiding k(k − 1) · · ·321.

cIk = sIk = (k − 1)2.
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To boldly go . . .

Conjecture

For all A, cA = sA.
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Expectation + Concentration ⇒ Preservation

There are a number of different constructions that take pattern classes
as input and produce pattern classes as output. A natural question to
ask is:

How do these constructions affect the constants c• and s•?

M. H. Albert (Otago) Longest Avoiding Subsequences PP 2006, Reykjavik 12 / 25



Expectation + Concentration ⇒ Preservation

There are a number of different constructions that take pattern classes
as input and produce pattern classes as output. A natural question to
ask is:

How do these constructions affect the constants c• and s•?

Obviously our hope is that the constructions preserve positive
instances of the conjecture!
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Union

Proposition
Let A and B be proper pattern classes and let C = A ∪ B. Then:

sC = max(sA, sB)

cC = max(cA, cB).
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Sum

Proposition
Let A and B be proper pattern classes and let C = A⊕ B. Then:

sC = max(sA, sB)

cC = max(cA, cB).
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Juxtaposition

Proposition
Let A and B be proper pattern classes and let C = AB. Then:

sC = sA + sB
cC = cA + cB.
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Merge

Proposition
Let A and B be proper pattern classes whose intersection is finite and
let C = Merge(A,B). Then:

√
sC =

√
sA +

√
sB√

cC =
√

cA +
√

cB.

Removing, or at least weakening, the rather stringent condition here
would be desirable.
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Rotation

Proposition
Let A be a proper pattern class and let B = Rot(A) (rotations of A).
Then sB = sA and cB = cA.
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Salted fish

No doubt some of the preceding results could be strengthened and
other preservation results could be found.
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Computing cA

Can we compute or estimate cA for some classes A not
covered by the preservation theorems?
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Computing cA

Can we compute or estimate cA for some classes A not
covered by the preservation theorems?

No real progress on “closed form” computation.

Estimation or experiment requires us to have available good
algorithms for finding LAS(π) (the length of the longest A
subsequence in a permutation π) for long random permutations π.
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Algorithms

What algorithms are there for computing LAS(π)?
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(recursive block decomposition) there is a polynomial time
algorithm for determining LAS(π).
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programming on the set [n] × [n] (and generally on collections of
rectangles in this set) so the degrees tend to be rather high. For
example, for Av(312) the complexity is O(n5).

M. H. Albert (Otago) Longest Avoiding Subsequences PP 2006, Reykjavik 20 / 25



Algorithms

What algorithms are there for computing LAS(π)?

In one of the early “Theory group” papers we showed that for
classes A defined by a “constructive fixed point equation”
(recursive block decomposition) there is a polynomial time
algorithm for determining LAS(π).
Unfortunately, these algorithms are based on dynamic
programming on the set [n] × [n] (and generally on collections of
rectangles in this set) so the degrees tend to be rather high. For
example, for Av(312) the complexity is O(n5).
Three classes in which we can carry out experiments to some
reasonable length:

L = Av(231, 312) the layered permutations

L(2) = Av(231, 312, 321) layers of size ≤ 2

C = Av(321, 312) direct sums of 234 · · ·n1
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Layered permutations

Complexity of the algorithm is O(n2 log n), sL = 2.

Length µ σ ∼ cL
1 × 102 23.8 1.8 1.418
2 × 102 34.8 2.2 1.517
4 × 102 50.6 2.5 1.602
8 × 102 73.4 3.0 1.682

16 × 102 105.2 3.3 1.730
32 × 102 150.7 4.0 1.774
64 × 102 215.9 4.4 1.821

128 × 102 307.5 4.9 1.847
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Fibonacci (L(2))

Complexity of the algorithm is O(n log n) (improvement from theory
group paper), sL(2) = (1 +

√
5)/2 = 1.618 . . ..

Length µ σ ∼ cL(2)

1 × 104 239.3 4.5 1.431
2 × 104 340.7 5.2 1.451
4 × 104 484.7 6.1 1.468
8 × 104 688.4 6.4 1.481

16 × 104 978.1 7.1 1.495
32 × 104 1386.8 8.3 1.503
64 × 104 1965.3 9.3 1.510

128 × 104 2785.3 10.2 1.515
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Sums of cycles

Complexity of the algorithm is O(n3 log n) (but in practice better),
sC = 2.

Length µ σ ∼ cC
1 × 102 22.9 2.0 1.306
2 × 102 33.5 2.3 1.406
4 × 102 48.5 2.4 1.470
8 × 102 70.5 3.1 1.555

16 × 102 101.2 3.3 1.601
32 × 102 145.2 3.9 1.647

M. H. Albert (Otago) Longest Avoiding Subsequences PP 2006, Reykjavik 23 / 25



Av(312)
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Av(312)

Nothing really known.
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Av(312)

Nothing really known.

A greedy approach seems to produce a subsequence of length
2
√

n but as that is the same as the longest increasing
subsequence that’s not very helpful!
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However, the analogue of the greedy approach for the LIS is the
Diversion that we began with.

Optimal play in the diversion gives a length of
√

2n, so at least we
have some improvement on that.

M. H. Albert (Otago) Longest Avoiding Subsequences PP 2006, Reykjavik 24 / 25



Av(312)

Nothing really known.

A greedy approach seems to produce a subsequence of length
2
√

n but as that is the same as the longest increasing
subsequence that’s not very helpful!

However, the analogue of the greedy approach for the LIS is the
Diversion that we began with.

Optimal play in the diversion gives a length of
√

2n, so at least we
have some improvement on that.

Optimal play in the diversion extended to avoiding 321 does not
give 2

√
n. Sigh.
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Summary

Many of the known results for longest increasing subsequences
extend to longest A subsequences.

There is an intriguing possibility of a connection between the
constants cA and sA.

Classes with good “structural” definitions are the ones in which
investigations of cA are easiest.

Wanted: Good algorithms for finding longest A subsequences.

Some interesting aspects of the “online” version of the problem
also seem to be emerging.
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So long, and thanks for all the fish

Thank you to the organisers of

Permutation Patterns 2006
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