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I) Background

The topic of packing densities of layered
patterns is fairly well covered.  However the
topic of packing densities of non-layered
patterns is not as well understood.

From Albert, Atkinson, Handley, Holton, and
Stromquist [AAHHS]:  "On packing

densities
of permutations,"   EJC 9(2002)



Consider the non-layered pattern
2413:
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A lower bound for the packing density of
2413 can be determined in the following
way:   The permutation 35827146 contains
a relatively high number (17) of occurrences
of 2413.
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Consider the permutations of the form
σ = σ3σ5σ8σ2σ7σ1σ4σ6 , where for each i ,
the blocks σi < σi+1 and |σi| = |σi+1| and
where each σi is recursively structured in
the same way.  It is easy to see that | σ |
equals a multiple of 8, call it n.



There are several ways for a given pattern
to occur in a permutation.  We will use only
two of them in finding the probability pn that
2413 will occur in the aforementioned σ .

1. All four points of the 2413 occurrence lie
in a single σi :  8(1/8)4 pn/8

2. Each of the four points of the 2413
occurrence lies in a distinct σi: 
17×4!×(1/8)4



Thus the probability pn that 2413 will occur
in σ will be:  pn = 8 (1/8)4  pn/8  + 17 × 4! ×
(1/8)4

 As n approaches infinity, pn approaches a
limit p, yielding the equation

p = 8 (1/8)4  p  + 17 × 4! × (1/8)4

and its solution, unweighted
p = 51/511 ≈ 0.0998043052838375734
which is a lower bound for the actual
packing density of 2413.



II) Weighted Template based on
multiplicity

In the 17
occurrences of
2413 in
35827146, the
points 3, 8, 1, & 6
appeared 9 times
and 5, 2, 7, & 4
appeared 8 times.
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We apply this to the recursively constructed
σ mentioned in I). σ3, σ8, σ1, and σ6 each
will have a weight of 9/68 and σ5, σ2 , σ7 ,
and σ4 each will have a weight of 8/68.

The weighted probability equation becomes
p = [4(9/68)4 + 4(8/68)4] p + 4![94 + 4(93×8) +

8(92×82) + 4(9×83)]/684 .

Thus weighted p ≈ 0.100991492096912125
& unweighted p ≈ 0.0998043052838375734.



Now let's consider the permutation
468(12)3(11)2(10)1579 and the number of
2413 patterns in it.  There are 86 of them.
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Unweighted:
Our probability equation becomes
 p = 12 (1/12)4  p  + 86 × 4! × (1/12)4.

Weighted:
Our recursively constructed σ has the form
σ4σ6σ8σ12σ3σ11σ2σ10σ1σ5σ7σ9 and the
weights are 31/344 for σ4, σ12, σ1, & σ9,
29/344 for σ6, σ11, σ2, & σ7 and 26/344 for
σ8, σ3, σ10, & σ5.



Using the permutation 468(12)3(11)2(10)1579,

we find the following probabilities:

weighted p ≈ 0.10137416835977531252
unweighted p ≈ 0.09959467284308049.

Thus far, the weighted probability is yielding
a better lower bound for the packing density
of 2413.



III) Optimally Weighted Template

Now we will write the general probability
equation as a multivariable function with
variables replacing of the multiplicity

weights
and will find the optimal weights by locally
maximizing the function.



Example for 2413 in 35827146:

The general probability equation is
f(x,y)=24[x4+4x3y+8x2y2+4xy3] / [1-4x4-4y4].

Using Mathematica to maximize f with the
constraints 4x + 4y = 1 and x & y > 0, we
find that the optimal weights are
x ≈ 15544748590173554 and
y ≈ 0.09455251409826446.



These optimal weights provide us with an
improved lower bound for the packing
density of 2413 as compared below:
Optimally weighted:
0.10247328135488704
Weighted:
0.10099149209691215
Unweighted:
0.0998043052838375734



Example for 2413 in 468(12)3(11)2(10)1579:

The general probability equation is
f(x,y,z) =24[x4 + 4x3y + 6x2y2 + 4xy3 + y4 +

4x3z + 16x2yz + 16xy2z + 4y3z + 8x2z2 +
12xyz2 + 6y2z2 + 4xz3] / [1 - 4(x4 + y4 + z4)]

Using Mathematica to maximize f with the
constraints 4x+4y+4z=1 and x, y, & z > 0,
we find that the optimal weights are
x ≈ 0.12461011912365183,
y ≈ 0.06830111111514646, and
z ≈ 0.0570887697612017



These new optimal weights provide us with
an improved lower bound for the packing
density of 2413 as compared below:
Optimally weighted:
0.10381609308698811
Weighted:
0.1013741683597753125218536
Unweighted:
0.09959467284308049



IV) Weighted Template works for
other patterns.

Example:
There are 36
occurrences of
51324 in
9(10)15326478.

Multiplicities are
shown to the
right. 28

18
18

18
16

18
14

14
18

18



Unweighted:

The probability equation is

p = 10 (1/10)5  p  + 36 × 5! × (1/10)5

and yields p ≈ 0.043204320432043204 as a
lower bound for the packing density of
51324.



Weighted:

p = [6a5+2b5+c5+d5]p + 120[8a4b+4a4d+
8a3bd+4a3cd+12a2bcd], where a = 18/180,
b = 14/180, c = 16/180, and d = 28/180.

From this we get a weighted lower bound of
p ≈ 0.0486795067329173231137 compared
to the unweighted lower bound of
p ≈ 0.043204320432043204.



The general probability function is
f(a,b,c,d) =
120[8a4b+4a4d+8a3bd+4a3cd+12a2bcd] / [1-6a5-
2b5-c5-d5] .

Again Mathematica is used to maximize the
function with the constraints a ≥ 0, b ≥ 0,
c ≥ 0, d ≥ 0, and 6a+2b+c+d=1. In trying to
find the optimal weights using Mathematica,
we find that the program wants to assign the
variable a to be significantly close to 0, b < 0,
c < 0, and d = 1.



Attempts to correct this are as follows:
1) Change to a ≥ 0.01. This results in
optimal weights of a ≈ 0.150019, b = 0,c =

0,
d ≈ 0.099885 and a lower bound of 0.14589.

2) Change to b ≥ 0.01. This results in
optimal weights of a ≈ 0.147018, b = 0.01,
c ≈ 1.96282×10-10, d ≈ 0.0978919 and a
lower bound of 0.131865.



3) Change to c ≥ 0.01. This results in
optimal weights of a ≈ 0.146642,
b = 1.49143×10-8, c = 0.0100075, d ≈

0.110139
and a lower bound of 0.145192.

From this data, we can infer that the
permutation 9(10)15326478 was not the
best template for the pattern 51324 and a
better one may found by eliminating either
the “b” blocks alone or both “b” & “c” blocks.


