Forest-like permutations

Mireille Bousquet-Mélou, CNRS, LaBRI, Bordeaux

Steven Butler, UCSD, San Diego

math.CO: 0603617

Outline

I. "Locally factorial" permutations [Woo-Yong 05]

II. Characterization: "locally factorial" \equiv forest-like

III. Enumeration

IV. Open questions

"Smooth" permutations

avoids 1324 and 2143. **Theorem** [Lakshmibai-Sandhya 90] : The Schubert variety X_{π} is smooth iff π

Generating function [Haiman 92, 06]:

$$S(x) = \sum_{n \ge 1} s_n x^n = x \frac{1 - 5x + 4x^2 + x\sqrt{1 - 4x}}{1 - 6x + 8x^2 - 4x^3}.$$

[Bóna 98]: pairs of patterns that are Wilf-equivalent to the "smooth" pair

"Locally factorial" permutations

Locally factorial varieties generalize smooth varieties

	Map L_π		Patterns	Variety X_π
		[Lakshmibai-Sandhya 90]	1324 and 2143	Smooth
[Woo-Yong 05]	Surjective		?	Locally factorial

A construction on permutations

A construction on permutations

The Hasse diagram of the permutation, seen as a sub-poset of \mathbb{N}^2

Three related objects

Three related objects

A collection of bars

Three related objects

 $e(\pi)$ edges

Three related objects

A collection of bars

The graph G_{π}

 $e(\pi)$ edges

Three related objects

 $e(\pi)$ edges

$$L_\pi$$
 :

$$\mathbb{Z}^{n-1}$$

$$\mathbb{Z}^{e(\pi)}$$

$$(\alpha_1,\ldots,\alpha_{n-1})\mapsto (\beta_1,\ldots,\beta_{e(\pi)})$$

 β_k : sum of the α_j 's crossed by the kth bar

$$(\beta_1 = \alpha_1 + \alpha_2 + \alpha_3, \ \beta_2 = \alpha_2 + \alpha_3, \ \cdots)$$

A collection of bars

 β_9

The map L_{π}

"Locally factorial" permutations

Map L_π		Patterns	Variety X_{π}
	[Lakshmibai-Sandhya 90]	1324 and 2143	Smooth
Surjective (onto) [Woo-Yong 05]			Locally factorial

Part II. Characterization of "locally factorial" permutations

Thm 1: Characterization of "locally factorial" permutations

Graph G_π	Map L_π	Patterns	Variety X_{π}
		1324 and 2143 [Lakshmibai-Sandhya 90]	Smooth
Forest (no cycle) [mbm-Butler 06]	Surjective [Woo-Yong 05]	1324 and 21354 [mbm-Butler 06]	Locally factorial

Terminology: "locally factorial" ≡ forest-like

Forest-like permutations: an example

The pattern 21354

2143) is a sub-occurrence of 21354. Def. The permutation π avoids 21 $\overline{3}$ 54 if every occurrence of 2154 (that is, of

 \Rightarrow The permutation π avoids 21354 iff the edges in the Hasse diagram of π do not cross: no occurrence of

The pattern 21354

The permutation π avoids 21 $\overline{3}$ 54 iff the associated Hasse diagram is planar.

Planar

Non-planar

Thm 1: Characterization of "locally factorial" permutations

Graph G_π	Map L_π	Patterns	Variety X_{π}
		1324 and 2143 [Lakshmibai-Sandhya 90]	Smooth
Forest (no cycle) [mbm-Butler 06]	Surjective [Woo-Yong 05]	1324 and 21354 [mbm-Butler 06]	Locally factorial

Terminology: "locally factorial" ≡ forest-like

ω •

О

1

 G_{π} is not a forest

 G_{π} is not a forest

Linear dependence among the eta_j 's

 $\Rightarrow L_{\pi}$ is not surjective

Part III. Enumeration of "locally factorial" (forest-like) permutations

An easy case: rooted forest-like permutations

Def: π is rooted is $\pi(1) = 1$.

Lemma: A rooted permutation is forest-like iff it avoids 213. Hence $r_n = C_{n-1}$.

once 213 is forbidden). \square Proof. Must avoid 1324 (hence 213) and $21\overline{3}54$ (which holds automatically

Rooted forest-like permutations are in bijection with (rooted) plane trees

Recursive structure:

General case: structure of forest-like permutations

General case: structure of forest-like permutations

- If $\pi \mapsto (\sigma, \tau)$, then σ is forest-like, τ is rooted forest-like.
- To reconstruct π , one inserts 1 just before a right-to-left minimum of σ .

General case: functional equations

- counted by the size (x) and number of r-l minima (u). Let $\mathcal{F}(u) \equiv \mathcal{F}(x,u)$ be the generating function of forest-like permutations,
- Define similarly $\mathcal{R}(u) \equiv \mathcal{R}(x, u)$ for *rooted* forest-like permutations. Then

$$\mathcal{F}(u) = xu + xu\mathcal{F}(1) + xu^2 \frac{\mathcal{F}(u) - \mathcal{F}(1)}{u - 1} + (\mathcal{R}(u) - xu)\mathcal{F}'(1),$$

$$\mathcal{R}(u) = xu + xu\mathcal{R}(u) + (\mathcal{R}(u) - xu)\mathcal{R}(1),$$

where $\mathcal{F}'(1) = \frac{\partial \mathcal{F}}{\partial u}(x,1)$.

Solution via the kernel method

ullet The number of rooted forest-like permutations of \mathfrak{S}_n is the Catalan number

$$C_{n-1}$$
:

$$r_n = \frac{1}{n} {2n-2 \choose n-1} = C_{n-1}.$$

The associated generating function is

$$R(x) = \sum_{n \ge 1} r_n x^n = \frac{1 - \sqrt{1 - 4x}}{2}$$

The generating function of forest-like permutations is

$$F(x) = \sum_{n>1} f_n x^n = \frac{(1-x)(1-4x+2x^2) - (1-5x)\sqrt{1-4x}}{2(1-5x+2x^2-x^3)}$$

Part IV. Questions

Questions

- 1. How many planar permutations are there? ($21\overline{3}54$ -avoiding)
- 1, 2, 6, 23, 104, 530, 2958, 17734, 112657...

- diagram (= number of elements covering them in the Bruhat order) Count permutations by the size and the number of edges in their Hasse
- 3. "Gorenstein" permutations

"Gorenstein" permutations

	Graph G_π		Map L_π		Patterns	Variety X_π
				[Lakshmibai-Sandhya 90]	1324 and 2143	Smooth
[mbm-Butler 06]	Forest	[Woo-Yong 05]	Surjective	[mbm-Butler 06]	1324 and 21354	Locally factorial
	?	[Woo-Yong 05]	Reaches (1, 1,, 1)	?		Gorenstein

That's it!