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“Smooth” permutations

Theorem [Lakshmibai-Sandhya 90| : The Schubert variety X is smooth iff «
avoids 1324 and 2143.
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Generating function [Haiman 92, 06]:
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'Béna 98]: pairs of patterns that are Wilf-equivalent to the “smooth” pair



“ocally factorial’ permutations

Locally factorial varieties generalize smooth varieties

Variety X Smooth Locally factorial

Patterns 1324 and 2143 7
[Lakshmibai-Sandhya 90]

Map L. Surjective

[Woo-Yong 05]



(i) A

construction on permutations




A construction on permutations
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The Hasse diagram of the permutation, seen as a sub-poset of Zm



Three related objects
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Three related objects
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A collection of bars

Three related objects

The graph G-
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Three related objects
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“ocally factorial’ permutations

Variety X, Smooth Locally factorial

Patterns 1324 and 2143

[Lakshmibai-Sandhya 90]

Map L Surjective (onto)

[Woo-Yong 05]




Part II. Characterization of “locally factorial’ permutations



Thm 1: Characterization of “locally factorial” permutations

Variety X, Smooth Locally factorial

Patterns 1324 and 2143 1324 and 21354

[Lakshmibai-Sandhya 90] | [mbm-Butler 06]

Map L, Surjective

[Woo-Yong 05]

Graph G Forest (no cycle)

[mbm-Butler 06]

Terminology: “locally factorial” = forest-like



Forest-like permutations: an example




The pattern 21354

Def. The permutation = avoids 21354 if every occurrence of 2154 (that is, of
2143) is a sub-occurrence of 21354,
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= The permutation = avoids 21354 iff the edges in the Hasse diagram of « do
not cross: no occurrence of




The pattern 21354

The permutation = avoids 21354 iff the associated Hasse diagram is planar.
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Thm 1: Characterization of “locally factorial” permutations

Variety X, Smooth Locally factorial

Patterns 1324 and 2143 1324 and 21354

[Lakshmibai-Sandhya 90] | [mbm-Butler 06]

Map L, Surjective

[Woo-Yong 05]

Graph G Forest (no cycle)

[mbm-Butler 06]

Terminology: “locally factorial” = forest-like
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Why 1324 creates cycles in G and prevents surjectivity
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Why 1324 creates cycles in G and prevents surjectivity
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Why 1324 creates cycles in G and prevents surjectivity
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Why 1324 creates cycles in G and prevents surjectivity
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Why 1324 creates cycles in G and prevents surjectivity
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Why 1324 creates cycles in G and prevents surjectivity
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(- is not a forest

G1+5S>2=038+ 51
Linear dependence among the g;'s

= L_ is not surjective



Part III. Enumeration of “locally factorial’ (forest-like)

permutations



An easy case: rooted forest-like permutations
Def: m is rooted is w(1) = 1.
Lemma: A rooted permutation is forest-like iff it avoids 213. Hence rp, = C,,_1.

Proof. Must avoid 1324 (hence 213) and 21354 (which holds automatically
once 213 is forbidden). O

e Rooted forest-like permutations are in bijection with (rooted) plane trees

AL

Recursive structure:

7 (2)




General case: structure of forest-like permutations
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General case: structure of forest-like permutations

=

(i 4+ 1)

Splitting line
between ¢ and T

0 0

N

7o) =1
o If m— (o,7), then o is forest-like, 7 is rooted forest-like.

e [0 reconstruct m, one inserts 1 just before a right-to-left minimum of o.



General case: functional equations

e Let F(u) = F(x,u) be the generating function of forest-like permutations,
counted by the size (z) and number of r-I minima (u).

e Define similarly R(u) = R(x, u) for rooted forest-like permutations. Then

Flu) = zu + zuF (1) + Hﬁm.ﬂﬁﬁhHWﬁu + (R(w) — zu)F'(1),
R(u) = zu + ruR(u) + (R(u) —xu)R(1),

where /(1) = % (z, 1).



Solution via the kernel method

e The number of rooted forest-like permutations of &5 is the Catalan number
C,_1:
1 2n —2
m=—("" ") =1
The associated generating function is

R(z) = ) rnpz" =

n>1

e [he generating function of forest-like permutations is

(1—z)(1—-4z4229)— (1L —-52)/1 -4z
2(1 —= 5z 4 2z2 —z3) .

F(z)= Y faa" =

n>1



Part IV. Questions



Questions

1. How many planar permutations are there? (21354-avoiding)

1, 2, 6, 23, 104, 530, 2958, 17734, 112657...
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2. Count permutations by the size and the number of edges in their Hasse
diagram (= number of elements covering them in the Bruhat order)

3. “Gorenstein” permutations



“Gorenstein” permutations

Variety X, Smooth Locally factorial Gorenstein
Patterns 1324 and 2143 1324 and 21354
[Lakshmibai-Sandhya 90] | [mbm-Butler 06] ?
Map Lx Surjective Reaches (1,1,...,1)
[Woo-Yong 05] [Woo-Yong 05]
Graph Gr Forest K
[mbm-Butler 06]




That's it!



