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Pattern Involvement

Regard a permutation of length n as an ordering of the
symbols 1, . . . , n.

A permutation τ = t1t2 . . . tk is involved in the permutation
σ = s1s2 . . . sn if there exists a subsequence si1 , si2 , . . . , sik
order isomorphic to τ .
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Involvement forms a partial order on the set of all
permutations.

Downsets of permutations in this partial order form
permutation classes.

A permutation class C can be seen to avoid certain
permutations. Write C = Av(B).

Example

The class C = Av(12) consists of all the decreasing
permutations:

{1, 21, 321, 4321, . . .}
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|Cn|xn is the generating function.
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The generating function of C = Av(12) is:

1 + x + x2 + x3 + · · · =
1

1 − x
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An interval of π is a set of contiguous indices I = [a, b]
such that π(I) = {π(i) : i ∈ I} is also contiguous.
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Av(132)

132-avoiders: generic structure.

Only simple permutations are1, 12, and 21.

Enumerate recursively: f (x) = xf (x)2 + 1.
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Finitely Many Simples

Motivation II

“ ...the standard intuition of what a family with an algebraic
generating function looks like: the algebraicity suggests
that it may (or should...), be possible to give a recursive
description of the objects based on disjoint union of sets
and concatentation of objects.”

— Bousquet-Mélou, 2006

We can always write permutations with a simple block
pattern, the substitution decomposition.

Use recursive enumeration for classes with finitely many
simple permutations.

Expect an algebraic generating function.
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Theorem (RB, SH, VV)

In a permutation class C with only finitely many simple
permutations, the following sequences have algebraic
generating functions:

the number of permutations in Cn (Albert and Atkinson),

the number of alternating permutations in Cn,

the number of even permutations in Cn,

the number of Dumont permutations in Cn,

the number of permutations in Cn avoiding any finite set of
blocked or barred permutations,

the number of involutions in Cn, and

Any (finite) combination of the above.
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Why I

Every simple of length ≥ 4 contains 132.

Every simple of length ≥ f (4) contains 2 almost disjoint
copies of 132.

≥ f (f (4)) contains 4 copies of 132.

...

Theorem (Bóna; Mansour and Vainshtein)

For every fixed r, the class of all permutations containing at
most r copies of 132 has an algebraic generating function.
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Av(β≤r1
1 , β

≤r2
2 , . . . , β

≤rk
k ) — the class with: ≤ r1 copies of β1,

≤ r2 copies of β2, etc.

Corollary

If the class Av(β1, β2, . . . , βk ) contains only finitely many simple
permutations then for all choices of nonnegative integers r1, r2,
. . . , and rk , the class Av(β≤r1

1 , β
≤r2
2 , . . . , β

≤rk
k ) also contains only

finitely many simple permutations.

Corollary

For all r and s, every subclass of Av(2413≤r , 3142≤s) contains
only finitely many simple permutations and thus has an
algebraic generating function.
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Start with any two points.

Extend up, down, left, or right – this is a right pin.

A proper pin must be maximal and cut the previous pin, but
not the rectangle.

A right-reaching pin sequence.
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permutation.
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Theorem

Every simple permutation of length at least 2(2048k8)(2048k8)(2k)

contains either a proper pin sequence of length at least 2k or a
parallel alternation or a wedge simple permutation of length at
least 2k.

Proper pin sequence ⇒ two almost disjoint simples.

Parallel alternation ⇒ two almost disjoint simples.

Wedge simple permutation ⇒ two almost disjoint simples.
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Decomposing Simple Permutations

The Decomposition Theorem

Theorem (RB, SH, VV)

There is a function f (k) such that every simple permutation of
length at least f (k) contains two simple subsequences, each of
length at least k, which share at most two entries in common.
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Theorem (RB, NR, VV)

It is decidable whether a finitely based permutation class
contains only finitely many simple permutations.

Proof.

Technical theorem ⇒ only look for arbitrary parallel or
wedge simple permutations, or proper pin sequences.

Parallel and wedge simple permutations easily verified.

Proper pin sequences ↔ the language of pins.

Language of pins avoiding a given pattern is regular.

Decidable if a regular language is infinite.
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Áttu eitthvað ódýrara?
Do you have anything cheaper?


