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Definition of Permutation Tableau

A permutation tableau

is a filling of a k × (n − k) rectangle
with 0s, 1s and 2s such that

(SE-2s) The 2s cut out a Ferrers board.

(1-hinge) A cell must contain a 1 if there is a 1 to its left in the same
row and a 1 above it in the same column.

(column) Every column contains at least one 1.

Alex Burstein On some properties of permutation tableaux



Outline
Permutation Tableaux

Row and Column Decomposition
Statistics on Tableaux and Permutations

Essential 1s
Open Problems

Row and Column Labeling
Tableaux and Permutations

Definition of Permutation Tableau

A permutation tableau is a filling of a k × (n − k) rectangle

with 0s, 1s and 2s such that

(SE-2s) The 2s cut out a Ferrers board.

(1-hinge) A cell must contain a 1 if there is a 1 to its left in the same
row and a 1 above it in the same column.

(column) Every column contains at least one 1.

Alex Burstein On some properties of permutation tableaux



Outline
Permutation Tableaux

Row and Column Decomposition
Statistics on Tableaux and Permutations

Essential 1s
Open Problems

Row and Column Labeling
Tableaux and Permutations

Definition of Permutation Tableau

A permutation tableau is a filling of a k × (n − k) rectangle
with 0s, 1s and 2s

such that

(SE-2s) The 2s cut out a Ferrers board.

(1-hinge) A cell must contain a 1 if there is a 1 to its left in the same
row and a 1 above it in the same column.

(column) Every column contains at least one 1.

Alex Burstein On some properties of permutation tableaux



Outline
Permutation Tableaux

Row and Column Decomposition
Statistics on Tableaux and Permutations

Essential 1s
Open Problems

Row and Column Labeling
Tableaux and Permutations

Definition of Permutation Tableau

A permutation tableau is a filling of a k × (n − k) rectangle
with 0s, 1s and 2s such that

(SE-2s) The 2s cut out a Ferrers board.

(1-hinge) A cell must contain a 1 if there is a 1 to its left in the same
row and a 1 above it in the same column.

(column) Every column contains at least one 1.

Alex Burstein On some properties of permutation tableaux



Outline
Permutation Tableaux

Row and Column Decomposition
Statistics on Tableaux and Permutations

Essential 1s
Open Problems

Row and Column Labeling
Tableaux and Permutations

Definition of Permutation Tableau

A permutation tableau is a filling of a k × (n − k) rectangle
with 0s, 1s and 2s such that

(SE-2s) The 2s cut out a Ferrers board.

(1-hinge) A cell must contain a 1 if there is a 1 to its left in the same
row and a 1 above it in the same column.

(column) Every column contains at least one 1.

Alex Burstein On some properties of permutation tableaux



Outline
Permutation Tableaux

Row and Column Decomposition
Statistics on Tableaux and Permutations

Essential 1s
Open Problems

Row and Column Labeling
Tableaux and Permutations

Definition of Permutation Tableau

A permutation tableau is a filling of a k × (n − k) rectangle
with 0s, 1s and 2s such that

(SE-2s) The 2s cut out a Ferrers board.

(1-hinge) A cell must contain a 1 if there is a 1 to its left in the same
row and a 1 above it in the same column.

(column) Every column contains at least one 1.

Alex Burstein On some properties of permutation tableaux



Outline
Permutation Tableaux

Row and Column Decomposition
Statistics on Tableaux and Permutations

Essential 1s
Open Problems

Row and Column Labeling
Tableaux and Permutations

Definition of Permutation Tableau

A permutation tableau is a filling of a k × (n − k) rectangle
with 0s, 1s and 2s such that

(SE-2s) The 2s cut out a Ferrers board.

(1-hinge) A cell must contain a 1 if there is a 1 to its left in the same
row and a 1 above it in the same column.

(column) Every column contains at least one 1.

Alex Burstein On some properties of permutation tableaux



Outline
Permutation Tableaux

Row and Column Decomposition
Statistics on Tableaux and Permutations

Essential 1s
Open Problems

Row and Column Labeling
Tableaux and Permutations

Example

n = 20, k = 10
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Boundary Path

Extend the 01/2 boundary to a SW lattice path
(n − k, 0)→ (0, k) on n steps.

Label the path steps 1 through n from NE to SW end.

Label the rows and columns with the label of the
corresponding step.

Label each cell p with its row and column labels (lr (p), lc(p)).

Note that lc(p) > lr (p) for every cell p in the tableau.
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starting with a tableau T

use SE paths
start at NW boundary
salient points at 1s
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Φ : Tableaux → Permutations

π = Φ(T ) =

(
1 2 3 4 5 6 7 8 9 10
17 7 18 3 8 11 15 5 4 12

11 12 13 14 15 16 17 18 19 20
13 2 20 6 19 10 16 9 1 14

)
Φ is a bijection.

How to find Φ−1?

Steingŕımsson, Williams 2005: Reconstruction of T from π by
columns from right to left.

Reconstruction by rows from bottom to top is similar.

We will reconstruct T from π by columns from left to right (and by
rows from top to bottom).
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Leftmost column

We want to find the row labels of 1s in the leftmost column.

Notice that any two SE paths in the tableau may intersect at
most once – at their first common point.

Let i1, . . . , ik be the row labels of 1s in the leftmost column.

Then π(n) < π(i1) < π(i2) < · · · < π(ik) = n ...

...and for j ∈ (ir , ir+1), π(j) < π(ir ).

Hence, π(i1), π(i2), . . . , π(ik) = n are the LR-minima of the
subsequence of π on letters greater than π(n).

If T ′ is T without the leftmost column, then
Φ(T ) = Φ(T ′)(i1 i2 . . . ik n).
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Column Decomposition

The column decomposition of a permutation π is the (unique)
representation of π as a product cn−kcn−k−1 . . . c1 of
increasing cycles ci (1 ≤ i ≤ n − k) such that maximal
elements of ci ’s are distinct from one another and from other
elements in ci ’s, and if

i < j ,
ci contains b,
cj contains a < c ,
a < b < c ,

then cj also contains b.

This condition is equivalent to the 1-hinge rule for tableaux.
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The row decomposition of a permutation π is the (unique)
representation of π as a product ckck−1 . . . c1 of decreasing
cycles ci (1 ≤ i ≤ k) such that minimal elements of ci ’s are
distinct from one another and from other elements in ci ’s, and
if

i < j ,
ci contains b,
cj contains c > a,
c > b > a,

then cj also contains b.

This condition is also equivalent to the 1-hinge rule for
tableaux.
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Statistics on Permutation Tableaux

Let π = Φ(T ). Define

AEE (π) = |{(i , j) | j < i ≤ π(i) < π(j)}| = #ee(T )

ANN(π) = |{(i , j) | π(j) < π(i) < i < j}| = #nn(T )

AEN(π) = |{(i , j) | j ≤ π(j) < π(i) < i}| = #en(T )

ANE (π) = |{(i , j) | π(i) < i < j ≤ π(j)}| = #ne(T ) = #2s(T )

CEE (π) = |{(i , j) | j < i ≤ π(j) < π(i)}|
CNN(π) = |{(i , j) | π(i) < π(j) < i < j}|

It can be shown that

CEE (π) + CNN(π) = #nontop 1s(T )
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Steingŕımsson and Williams define a map Ψ : Sn → Sn that takes
descents (des) and ascents (ndes) to weak excedances (wex) and
deficiencies (nwex).

They show that Ψ has the following properties. If π = Ψ(σ), then

des σ = wexπ − 1

(31-2)σ = AEE (π) + ANN(π)

(21-3)σ + (3-21)σ −
(

des σ

2

)
= AEN(π)

(2-31)σ = CEE (π) + CNN(π)

(1-32)σ + (32-1)σ −
(

des σ

2

)
= ANE (π)
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This implies:

AEN + ANN and CEE + CNN are equidistributed,

AEN and ANE are equidistributed.

To see the latter note that the map i ◦ r ◦ c (inverse of reversal of
complement, or reflection across the antidiagonal of the
permutation diagram) preserves wex , AEE , ANN , CEE , CNN , and
exchanges AEN and ANE .

Question: Describe the equivalent (under Φ) of irc on tableaux
directly.
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Catalan tableaux

Recall that |Sn(2-31)| = |Sn(2-3-1)| = Cn, the nth Catalan
number.

Hence, (SW, 2005) Cn is the number of tableaux with no
nontop 1s (i.e. with a single 1 per column).

Alex Burstein On some properties of permutation tableaux
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Catalan tableaux

Theorem

If a tableau T has a single 1 per column, and π = Φ(T ), then (the
underlying sets of) the cycles of π form a noncrossing partition.

Proof.

T has a single 1 per column, so no element of π may occur in
more than one cycle of its row decomposition.

Suppose π contains two cycles ci and cj and elements
a > b > c > d such that a, c are in ci and b, d are in cj .

If i < j , then cj contains c . If i > j , then ci contains b.
Neither is possible.

Thus, the ci ’s form a noncrossing partition.

Alex Burstein On some properties of permutation tableaux
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Monotone tableaux

A monotone tableau is one that has no 0 below or to the right
of any 1.

Note that AEE (T ) = ANN(T ) = 0 for monotone T .

Let π = Φ(T ) and let σ = Ψ−1(π).

Then σ avoids 31-2 (i.e. 3-1-2).

Note that the subsequences of weak excedance values of π
and deficiency values of π are increasing.

Hence, π avoids 3-2-1.

Theorem

Sn(31-2)
Ψ→ Sn(3-2-1)

Φ← monotone tableaux of semiperimeter n.

Alex Burstein On some properties of permutation tableaux
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Definition

Essential 1s –

leftmost 1s in their rows or topmost 1s in their columns.

Doubly essential 1s –
leftmost 1s in their rows and topmost 1s in their columns.
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Statistics

Define statistics:

ess(T ) = number of essential 1s in a tableau T .

dess(T ) = number of doubly essential 1s in a tableau T .

Note that n − ess(T ) = dess(T ) + zerorows(T ).
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Distribution

Conjecture (Steingŕımsson, Williams, 2005)

(n − ess, rows) has the same distribution on tableaux as
(cycles,wex) on permutations.

Each 0-row adds 1 to each of dess + zerorows, rows, cycles,wex ,
so we only need to consider tableaux with no 0-rows vs.
derangements.

Alex Burstein On some properties of permutation tableaux
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Distribution

Theorem (B., Eriksen, 2006)

(dess + zerorows, rows) has the same distribution on tableaux as
(cycles,wex) on permutations.

Each 0-row adds 1 to each of dess + zerorows, rows, cycles,wex ,
so we only need to consider tableaux with no 0-rows vs.
derangements.

Alex Burstein On some properties of permutation tableaux
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Bare tableaux

Define a new type of tableau called a bare tableau.

Almost all rules are the same as for permutation tableaux

(-hinge) A cell must contain a if there is a 1 to its left in the same
row and a 1 above it in the same column.
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Bare tableaux

Define a new type of tableau called a bare tableau.

Almost all rules are the same as for permutation tableaux except

(1-hinge) A cell must contain a 1 if there is a 1 to its left in the same
row and a 1 above it in the same column.
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Bare tableaux

Define a new type of tableau called a bare tableau.

Almost all rules are the same as for permutation tableaux except

(0-hinge) A cell must contain a 0 if there is a 1 to its left in the same
row and a 1 above it in the same column.
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Properties of the filling map

The filling map (0-hinge → 1-hinge) is a bijection:

essential 1s are uniquely determined by the tableaux;
essential 1s uniquely determine the nonessential 1s.

The filling map preserves:

positions of weak excedances (wexb) and
non-weak-excedances (nwext);
positions of 1 and n.

Alex Burstein On some properties of permutation tableaux
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Bare labeling properties

If a vertex is a left child, its label is the smallest in its subtree.

If a vertex is a right child, its label is the largest in its subtree.

Alex Burstein On some properties of permutation tableaux



Outline
Permutation Tableaux

Row and Column Decomposition
Statistics on Tableaux and Permutations

Essential 1s
Open Problems

Distribution
Bare Tableaux

Bare labeling properties

If a vertex is a left child, its label is the smallest in its subtree.

If a vertex is a right child, its label is the largest in its subtree.

Alex Burstein On some properties of permutation tableaux



Outline
Permutation Tableaux

Row and Column Decomposition
Statistics on Tableaux and Permutations

Essential 1s
Open Problems

Distribution
Bare Tableaux

Tree traversal (barely labeled tree → cycle)

Start from the smallest label (at the root) along the left edge, if possible.
If there is no left child, this is the first return to the root (see last rule).

At each step, start at the previous vertex and

try to move away from the root alternating unused left and
right edges as long as possible.
otherwise (if there are no such edges) move towards the root
along the same-side edges as long as possible.

The label of the end vertex of this path is the next term in the cycle.

At the first return to the root, the next term is the largest label at the
root. At the second return to the root (and when the root has no right
child), the cycle is complete.
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Cycle → barely labeled tree

Need only find 1s in the leftmost column (or in the top row).

...i.e. successive left (or right) children starting from the root.

1 20

3

13 18

7 9

4

19

15

17

Successive minima (maxima) in the direction of inverse cycle

in reverse order.
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Open Problems

Take your pick.

Plus avoidance: even more.

Steingŕımsson, Williams, B., Eriksen, Reifegerste, Viennot:
some answers.

Let B be “Φ on bare tableaux”. How is B−1(π) related to
Φ−1(π)?

Let aij be the number of derangements π such that B−1(π)
has i essential 1s, and Φ−1(π) has j essential 1s. Let
A = [aij ]. What can be said about A?

Etc.
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Etc.
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