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The sequence of Catalan numbers

1,1,2,5,14, . . .

is defined by C0 = 1 and the recursion

Cn+1 =
n∑

k=0

CkCn−k.

Example: C3 = C2 + C2
1 + C2 = 2 + 12 + 2.

From the well-known formula

Cn =
1

n + 1

(
2n

n

)

it is easily seen to be log-convex

(Ck)
2 ≤ Ck−1Ck+1.



No formula is known for q-Catalan numbers.

Definition (Carlitz & Riordan, 1964):

Let C0(q) = 1 and

Cn+1(q) =
n∑

k=0

q(k+1)(n−k)Ck(q)Cn−k(q).

Example: C3(q) = q2C2(q)+q2(C1(q))
2+C2(q).

This recursion shows the sequence of these
polynomials is increasing:

C0(q) = 1

C1(q) = 1

C2(q) = 1 + q

C3(q) = 1 + q + 2q2 + q3

C4(q) = 1 + q + 2q2 + 3q3 + 3q4 + 3q5 + q6



To obtain a log-convexity result, we use the

combinatorial interpretation:

Ck(q) =
∑
π

qinv π

where the sum is over permutations with k 1s

and k 2s such that every initial segment has

no more 2s than 1s.

Example: C3(q) = 1 + q + 2q2 + q3 because

the permutations

111222,112122,121122,112212,121212

have inversion numbers 0,1,2,2,3 respectively.

Notice that Cn(q) is monic of degree
(

n
2

)
, so

1 + deg (Ck(q))
2 = degCk−1(q)Ck+1(q).



Use this combinatorial interpretation to prove
the log-convexity result:

Theorem (Butler & Flanigan, 2006): These
q-Catalan numbers satisfy

q(Ck(q))
2 ≤ Ck−1(q)Ck+1(q).

That is, Ck−1(q)Ck+1(q)−q(Ck(q))
2 has non-

negative coefficients.

Example: The term qqq3 of qC3(q)C3(q)

q(1 + q + 2q2 + q3)(1 + q + 2q2 + q3)

corresponds to the pair of permutations
π = 112122
σ = 121212.

Our injection maps this pair to
σLπR = 1122
πLσR = 11221212,

which corresponds to a term q5 in C2(q)C4(q).

Notice 1 + inv π + inv σ = inv σLπR + inv πLσR.



More generally, for 1 ≤ r ≤ k and ` > k − r,

qr(`−k+r)Ck(q)C`(q) ≤ Ck−r(q)C`+r(q)

because there is an injection
Pk × P` → Pk−r × P`+r
(π, σ) 7→ (σLπR, πLσR)

where Pn is the set of permutations with n 1s
and n 2s such that every initial segment has no
more 2s than 1s. Indent by 2r and calculate

r(`−k+r)+inv π+inv σ = inv σLπR+inv πLσR.

To see q2(3)C6(q)C7(q) ≤ C4(q)C9(q), visualize
112112221122 7→ 12121122

12111212212212 112112211212212212
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This undergraduate research with Flanigan was
inspired by Butler’s result that [n0], [

n
1], . . . , [

n
n],

the sequence of Gaussian polynomials, is log-
concave. This result for the vector space Fq

n

may generalize to Z/pλ1Z×· · ·×Z/pλ`Z, which
has [λ, k]p subgroups of order pk.

Conjecture: ([λ, k]p)
2 ≥ [λ, k − 1]p [λ, k + 1]p.

The fact that the sequence of coefficients in
the Gaussian polynomial is unimodal, may also
generalize.

Conjecture: The sequence of coefficients in
the polynomial [λ, k]p is unimodal.

So, it is natural to ask about the q-Catalan
numbers invented by Carlitz and Riordan:

Conjecture (Stanton): The sequence of coef-
ficients in the polynomial Ck(q) is unimodal.

C5(q)=1+q+2q2+3q3+5q4+5q5+7q6+7q7+6q8+4q9+q10
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