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Notion of a τ-match

Given σ = σ1 · · ·σn, we define red(σ) be the

permutation that results by replacing the i-th

largest integer that appears in the sequence σ

by i.

Example: If σ = 2 7 5 4, then red(σ) = 1 4 3 2.

Given a permutation τ ∈ Sj, we define

τ-mch(σ) = {i|red(σi · · ·σi+j−1) = τ}.

Example: If τ = 1 3 2 4, and σ = 1 3 2 4 6 5 7,

then τ-mch(σ) = {1,4}.

When |τ | = 2, then |τ-mch(σ)| is familiar.

If τ = 2 1, then des(σ) = |τ-mch(σ)|.

If τ = 1 2,then rise(σ) = |τ-mch(σ)|.



Notion of a Υ-match and n-lap

More generally, if Υ is a set of permutations of

length j, then we say that a permutation σ =

σ1 · · ·σn ∈ Sn has a Υ match at place i provided

there is a τ ∈ Υ such that red(σi · · ·σi+j−1) =

τ .

Define Υ-mch(σ) to be the number of Υ matches

in the permutation σ.

Let τ-nlap(σ) and Υ−nlap(σ) be the maximum

number of non-overlapping τ-matches and Υ

matches in σ respectively.



A more refined matching condition

Suppose we define

τ-k-mch(σ) = {i|red(σi · · ·σi+j−1) = red(τ) and

for 0 ≤ s ≤ j − 1, σi+s = τ1+s mod k}.

Example: If τ = 1 2 and σ = 5 1 7 4 3 6 8 2,

then τ-mch(σ) = {2,5,6}, but τ-2-mch(σ) =

{5}.

Let τ-k-emch(σ) = |τ-k-mch(σ)|.



Notion of a Υ-k-match

More generally, if Υ is a set of sequences of

distinct integers of length j, then we say that

a permutation σ = σ1 · · ·σn ∈ Sn has a Υ-k-

equivalence match at place i provided there is a

τ ∈ Υ such that red(σi · · ·σi+j−1) = red(τ) and

for all s ∈ {0, . . . , j − 1}, σi+s = τ1+s mod k.

Let Υ-k-emch(σ) be the number of Υ-k-equivalence

matches in the permutation σ.

We shall review the study of the polynomials

UΥ,k,n(x) =
∑

σ∈Sn

xΥ-k-emch(σ) =
n∑

s=0

Us
Υ,k,nxs.



What exactly will we study?

In particular, we shall focus on certain special

cases of these polynomials where we consider

only patterns of length 2.

Fix k ≥ 2 and let Ak equal the set of all se-

quences we could consider for Ascents. For ex-

ample, A4 = {1 2,1 3,1 4,1 5,2 3,2 4,2 5,2 6,

3 4,3 5,3 6,3 7,4 5,4 6,4 7,4 8}.

Let Dk = {b a : a b ∈ Ak} and Ek = Ak ∪Dk.



What has already been studied?

Kitaev and Remmel found explicit formulas for

the coefficients Us
Υ,k,n in certain special cases.

In particular, they studied descents according

to the equivalence class mod k of either the

first or second element in a descent pair. That

is, for any set X ⊆ {0,1,2, . . .}, define

• ←−−DesX(σ) = {i : σi > σi+1 & σi ∈ X} and←−
desX(σ) = |←−−DesX(σ)|

• −−→DesX(σ) = {i : σi > σi+1 & σi+1 ∈ X} and−→
desX(σ) = |−−→DesX(σ)|



Kitaev and Remmel studied

1. A
(k)
n (x) =

∑
σ∈Sn x

←−
deskN(σ) =

∑bn
kc

j=0 A
(k)
j,n xj

and

2. B
(k)
n (x, z) =

∑
σ∈Sn x

−→
deskN(σ)zχ(σ1∈kN)

=
∑bn

kc
j=0

∑1
i=0 B

(k)
i,j,nzixj.

where kN = {0, k,2k, . . .}.



They showed that

For all 0 ≤ j ≤ k − 1 and all n ≥ 0, we have

A
(k)
s,kn+j

((k − 1)n + j)!

=
s∑

r=0

(−1)s−r
((k − 1)n + j + r

r

)(kn + j + 1

s− r

)

×
n−1∏

i=0

(r + 1 + j + (k − 1)i)

=
n−s∑

r=0

(−1)n−s−r
((k − 1)n + j + r

r

)(kn + j + 1

n− s− r

)

×
n∏

i=1

(r + (k − 1)i)



Special case

And using an identity were able to show:

A
(2)
s,2n =

(n

s

)2
(n!)2

and

A
(2)
s,2n+1 =

1

s + 1

(n

s

)2
((n + 1)!)2

We will now turn to another special case of

Us
Υ,k,n.

In particular, we will compute explicit formulas

for Us
Υ,k,n where

Υ = {(1 k)}.



Finding formulas:

Obtaining a recursion

Let

∆kn+j : xs → sxs−1 + (kn + j − s)xs

Γkn+k : xs → ((k−1)n+k+s−1)xs+(n−s+1)xs+1

The polynomials U{(1 k)},k,n(x) satisfy the fol-
lowing recursions.

1. U{(1 k)},k,1(x) = 1,

2. For j = 1, . . . , k − 1, U{(1 k)},k,kn+j(x) =
∆kn+j(U{(1 k)},k,kn+j−1(x)), and

3. U{(1 k)},k,kn+k(x) = Γkn+k(U{(1 k)},k,kn+k−1(x)).



The basic recursions

This gives rise to the following recursions for

the coefficients. For 1 ≤ j ≤ k − 1,

Us
{(1 k)},k,kn+j = (kn + j − s)Us

{(1 k)},k,kn+j−1

+(s + 1)Us+1
{(1 k)},k,kn+j−1

and

Us
{(1 k)},k,kn+k = (n− s + 2)Us−1

{(1 k)},k,kn+k−1

+((k − 1)n + s + k − 1)Us
{(1 k)},k,kn+k−1



Extreme coefficients

We have for j = 0, . . . , k − 1,

U0
{(1 k)},k,kn+j

= ((k − 1)n + j)!((k − 1)n + j)n

Un
{(1 k)},k,kn+j

= ((k − 1)n + j)!

Also note that

Um
{(1 k)},k,kn+j

= 0 for m > n.



Closed form 1

Starting with the formula for U0
{(1 k)},k,kn+j

we

can use the recursions to prove:

For all 0 ≤ j ≤ k−1 and all n such that kn+j >

0, we have

Us
{(1 k)},k,kn+j

=

((k− 1)n + j)!
∑s

r=0(−1)s−r((k− 1)n + r + j)n
(
(k−1)n+r+j

r

)(
kn+j+1

s−r

)



Closed form 2

Starting with the formula for Un
{(1 k)},k,kn+j

we

can use the recursions to prove:

For all 0 ≤ j ≤ k−1 and all n such that kn+j >

0, we have

Us
{(1 k)},k,kn+j

=

((k − 1)n + j)!
∑n−s

r=0(−1)n−s−r(1 + r)n
(
(k−1)n+r+j

r

)(
kn+j+1
n−s−r

)



Karlsson-Minton hypergeometric series

A hypergeometric series is defined by

pFq

[
a1, a2, . . . , ap

b1, b2, . . . , bq
; z

]
=

∞∑

k=0

(a1)k . . . (ap)k

k!(b1)k . . . (bq)k
zk

A Karlsson-Minton hypergeometric series is de-

fined by

t+1Ft

[
c1, c2, . . . , ct+1

b1, . . . , bt
; z

]
=

∞∑

k=0

(c1)k . . . (ct+1)k

k!(b1)k . . . (bt)k
zk



Gasper proved that

t+2Ft+1

[
w, x, b1 + d1, . . . bt + dt

x + c + 1, b1, . . . bt

]
=

Γ(1+x+c)Γ(1−w)
Γ(1+x−w)Γ(c+1)

∏t
i=1

(bi−x)di
(bi)di

×t+2Ft+1

[
−c, x, z − b1, . . . z − bt

z − w, z − b1 − d1, . . . z − bt − dt

]

where z = 1 + x, w, c, x, bi ∈ C, di ∈ N, and

<(c− w) > n− 1.



A Simple Example

Let Rn(x) = A
(2)
n (x) =

∑bn
2c

s=0 Rs,nxs. Let

∆2n+1 : xs → sxs−1 + (2n− s + 1)xs

and

Γ2n+2 : xs → (s + 1)xs + (2n− s + 1)xs+1.

Then Kitaev and Remmel proved the following.

The polynomials Rn(x)n≥1 satisfy the following

recursions.

1. R1(x) = 1,

2. R2n+1(x) = ∆2n+1(R2n(x)), and

3. R2n+2(x) = Γ2n+2(R2n+1(x)).



The basic recursions

This fact gave rise to the following recursions

for Rs,n(x).

Rs,2n+1 = (s + 1)Rs+1,2n + (2n− s + 1)Rs,2n

Rs,2n+2 = (s + 1)Rs,2n+1 + (2n− s + 2)Rs−1,2n+1

It was through these recursions that Kitaev and

Remmel were able to show that

Rk,2n =
(n

k

)2
(n!)2, and

Rk,2n+1 =
1

k + 1

(n

k

)2
((n + 1)!)2.



The q-recursions

To prove q-analogues of the results, let

∆q
2n+1 : xs → [s]q xs−1 + qs [2n− s + 1]q xs

and

Γq
2n+2 : xs → [s + 1]q xs+qs+1 [2n− s + 1]q xs+1.

Define R
q
n(x)n≥1 =

∑n
s=0 R

q
s,nxs, via the follow-

ing recursions.

1. R
q
1(x, q) = 1,

2. R
q
2n+1(x, q) = ∆q

2n+1(R
q
2n(x)), and

3. R
q
2n+2(x, q) = Γq

2n+2(R
q
2n+1(x)).



This fact gives rise to the following recursions

for the coefficients R
q
s,n(x).

R
q
s,2n+1 = [s + 1]q R

q
s+1,2n + qs [2n− s + 1]q R

q
s,2n

R
q
s,2n+2 = [s + 1]q R

q
s,2n+1 + qs [2n− s + 2]q R

q
s−1,2n+1

We can then show that the solution to these

recursions are

R
q
k,2n = q(

k
2)

[n
k

]
q

2
([n]q!)

2, and

R
q
k,2n+1 =

q(
k+1
2 )

[k + 1]q

[n
k

]
q

2
([n + 1]q!)

2.



A familliar permutation statistic, maj

Given σ ∈ Sn, maj(σ) =
∑

i∈Des(σ) i. Foata

showed that the maj statistic satisfies some

simple recursions. That is, for any permuta-

tion τ = τ1 . . . τn−1 ∈ Sn−1, we label the spaces

where we can insert n into τ to get a permu-

tation in Sn as follows.

1. Label the space following τn−1 with 0.

2. Next label the spaces that lie between de-

scents τi > τi+1 from right to left with the

integers 1, . . . , des(τ).

3. Finally label the remaining spaces from left

to right with the integers des(τ)+1, . . . , n.



Example: If τ = 3 9 2 8 5 4 1 6 7, then spaces

are labeled as follows:

5369427835241186970.

Then Foata proved that if τ(i) is the result of

inserting n into the space labeled i, then for all

i ∈ {0, . . . , n},

maj(τ(i)) = i + maj(τ).



The natural q-statistic

We can use a similar labeling procedure to

define a statistic Emaj such that R
q
n(x, q) =

∑
σ∈Sn qEmaj(σ)x

←−
desE.

Look at the operators that produced the re-

cursions.

∆q
2n+1 : xs → [s]q xs−1 + qs [2n− s + 1]q xs

and

Γq
2n+2 : xs → [s + 1]q xs+qs+1 [2n− s + 1]q xs+1.

Example: σ = 3 9 2 8 5 4 1 6 7. Then the

E-canonical labeling of σ is

3349526825741186970.



A more general example

Let us examine the q-analogue of the polyno-
mials U{(1k)},k,n(x). For j = 0, . . . , k − 2 let

∆q
kn+j : xs → [s]qx

s−1 + qs[kn + j − s]qx
s

and

Γq
kn+k : xs → [(k − 1)n + k + s− 1]qxs

+q(k−1)n+k+s−1[n− s + 1]xs+1. Define:

1. U
q
{(1k)},k,1(x, q) = 1,

2. For j = 1, . . . , k − 1, U
q
{(1k)},k,kn+j

(x, q) =

∆q
kn+j(U

q
{(1k)},k,kn+j−1(x, q)), and

3. U
q
{(1k)},k,kn+k

(x, q) =

Γq
kn+k(U

q
{(1k)},k,kn+k−1(x, q)).



The q-formulas

If U
q
{(1k)},k,kn+j

(x, q) =
∑n

s=0 U
s,q
{(1k)},k,kn+j

xs,

then

For all 0 ≤ j ≤ k−1 and all n such that kn+j >

0, we have

U
s,q
{(1k)},k,kn+j

[(k − 1)n + j]q!

=
s∑

r=0

(−1)s−rq(
s
2)−(r

2)−r(s−r)

× [(k − 1)n + j + r]nq
[(k − 1)n + j + r

r

]
q

[kn + j + 1

s− r

]

q

=
n−s∑

r=0

(−1)n−s−rq(
n−s
2 )−(r

2)−r(n−s−r)−(n+1
2 )+s(kn+j)

× [1 + r]nq
[(k − 1)n + j + r

r

]
q

[kn + j + 1

n− s− r

]

q



Some differences in the q-case

When q = 1 we know that

U0
{(1k)},k,kn+j = ((k − 1)n + j)! ((k − 1)n + j)n and

Un
{(1k)},k,kn+j = ((k − 1)n + j)!

and we used these facts to prove the formulas

hold.

U

U

U

U

U

U

0

0

0

0

0
{13},3,7

{13},3,6

{13},3,5

{13},3,4

{13},3,3

{13},3,2



Some differences in the q-case

In the general q-case, we need more. U
−1,q
{(1k)},k,kn+j

and U
n+1,q
{(1k)},k,kn+j

make sense but must be 0

by our definitions.

U

U

U

U

U

U

0

0

0

0

0
{13},3,7

{13},3,6

{13},3,5

{13},3,4

{13},3,3

{13},3,2

0

This can be proven with the following Theo-

rem.



A necessary Theorem

For all positive integers k, n, j, z1, . . . , zn and any

function θ(r) where kn + j > 0, 0 < zi < (k −
1)n + j, and θ(r + 1) = θ(r)− (n− r),

n+1∑

r=0

(−1)n+1−rqθ(r)
n∏

i=1

[zi + r]q

×
[ kn + j + 1

(k − 1)n + j, r, n + 1− r

]

q
= 0.



An alternate formula

It has also been shown that

Us
{(1k)},k,kn+j =

n∑
r=s

(−1)r−s
(r

s

)
(kn+j−r)!Sn+1,n+1−r

where Sn,k is the Stirling number of the second

kind, i.e. Sn,k is the number of set partitions

of {1, . . . , n} into k parts.

Conjecture: U
s,q
{(1k)},k,kn+j

=

∑n
r=s(−1)r−sq(

n+1−s
2 )+r((k−1)n+j)−(n+1

2 )+ns
[
r
s

]
q

× [kn + j − r]q!S
q
n+1,n+1−r where S

q
n,k is the q-

Stirling number of the second kind that defined

by the following recursion.

S
q
0,0 = 1, S

q
n,k = 0 if k < 0 or k > n, and,

S
q
n,k = S

q
n−1,k−1 + [k]q S

q
n−1,k if 0 ≤ k ≤ n.



Unanswered Questions

1. General Subset Problem

2. PQ-Analogues of U-Coefficients

3. Consider Matching where |τ | > 2

4. Find a Combinatorial Interpretation of the

Closed Forms

5. Wilf Equivalence Classes


