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Notion of a T-match

Given ¢ = oq1---0on, We define red(c) be the
permutation that results by replacing the :-th
largest integer that appears in the sequence o
by .

Example: Ifc =27 5 4, then red(oc) =1 4 3 2.
Given a permutation 7 € S;, we define

T-mch(o) = {ilred(o; - 054 j_1) = T}.

Example: If r=1324,andoc=1324657,
then m-mch(o) = {1,4}.

When |r| = 2, then |r-mch(o)] is familiar.
If =21, then des(o) = |T-mch(o)|.

If =1 2,then rise(oc) = |r-mch(o)|.



Notion of a T-match and n-lap

More generally, if T is a set of permutations of
length 5, then we say that a permutation o =
o1---on € Sp, has a Y match at place ¢ provided
there is a 7 € T such that red(o;---0;4 ;1) =

T.

Define T-mch(o) to be the number of T matches
in the permutation o.

Let 7-nlap(o) and Y —nlap(o) be the maximum
number of non-overlapping m-matches and Y
matches in o respectively.



A more refined matching condition

Suppose we define

T-k-mch(o) = {i|red(o;---0;4;_1) = red(r) and
for 0<s<j—1, 05404 =T7145 Mmod k}.

Example: If r=12andoc=517 436 8 2,
then m-mch(o) = {2,5,6}, but 7-2-mch(o) =
{5}

Let 7-k-emch(o) = |T-k-mch(o)].



Notion of a T-k-match

More generally, if T is a set of sequences of
distinct integers of length 35, then we say that

a permutation ¢ = o01---0n € Sp, has a T-k-
equivalence match at place 7 provided there is a

T € T such that red(o; -+ 054 ;1) = red(7) and

for all s € {0,...,5 — 1}, 0,45 = 7145 Mod k.

Let T-k-emch(o) be the number of T-k-equivalence
matches in the permutation o.

We shall review the study of the polynomials

n
U’Y‘,k,n(w) — Z w'Y‘-k-emch(a) — Z U'SY‘,k:,nms'
O-GSn SZO



What exactly will we study?

In particular, we shall focus on certain special
cases of these polynomials where we consider
only patterns of length 2.

Fix £k > 2 and let A; equal the set of all se-
quences we could consider for Ascents. For ex-
ample, A4, ={12,13,14,15,23,24,25,26,
34,35,36,37,45,46,47,4 8}.

Let Dkz{ba:abeAk} and Ek:AkUDk.



What has already been studied?

Kitaev and Remmel found explicit formulas for
the coefficients U'SY‘,k,n in certain special cases.
In particular, they studied descents according
to the equivalence class mod k of either the
first or second element in a descent pair. That
is, for any set X C {0,1,2,...}, define

%

o Desx(o) = {Z L 0p > 041 & o; € X} and
— ——
desx (o) = |Desx(0)]

—

e Desx(o) ={i:0;> 0,41 & 0;41 € X} and
— —
desx (o) = [Desx(o)]



Kitaev and Remmel studied

1. AP (@) = Yoes, el @ = niE AW

7=0 gn
and
2. ng)(:v,z) = > €S, T Cg‘ka(U)zX(UlékN)

= 31 3l BY) 2

where kN = {0, k, 2k, ...}.



They showed that

Forall 0 <3< k—1and all n>0, we have

A(K)
skn—l—]
((k—l)n-l-J)'
_ Z( 1)5- r((k—l)n+]+7“)(kn+]+1>

r S —T

nH b1+ + (= 1))
1=0

(k—1)n+j54+r/kn+j5+1
( e )

r n—s—r

— 2_:( 1)71—8—7“
r=0

< TT (4 G — 1))
1=1



Special case

And using an identity were able to show:

A2 = (" ?

s,2n

and

2 _ 1 m? 2
Ag 41 = s—I——l(s) ((n+ 1)1

We will now turn to another special case of
S
UN kn:

In particular, we will compute explicit formulas
S
for U'T,k,n where

T ={1k)}.



Finding formulas:

Obtaining a recursion

Let
Akn—|—] cr — 83?8_1 —I— (kj’n —I—] - S)xs

Cinti t @ — ((k=1)ntk+s—1)a*+(n—s+1)2"t!

The polynomials Uy )1 x,n(x) satisfy the fol-
lowing recursions.

1. U{(l k)},k,l(a:) — 1,

Alm—l-j(U{(l k)},k,kn—l—j—l(m))f and

3- Ut w)hkken4-,6(2) = Trnt e (U1 )}k ontk—1(2))-



T he basic recursions

This gives rise to the following recursions for
the coefficients. For 1 <7<k —1,

U{S(l k)}.kkntj (kn +j — S)U{S(l k)Y, kkn+j—1
s+1
+(s + 1)U{(1 )}k kntj—1
and

S _ s—1
Uit &)} khntk = (= s+ 2)U{(l )}k kn+k—1

+((k—Dn+s+k—DUfq 1)1 kkntk—1



Extreme coefficients

We have for y =0,...,k— 1,
U?(l k)},k,kn+j =((k-1Dn+)D'((k—Dn+45)"

?(1 )Y kkn+i ((k—1)n+4j)!

Also note that

Ut k)y .k knt; — 0 for m>mn.



Closed form 1

Starting with the formula for U?( e

can use the recursions to prove:

1 k)}kkntj

Forall 0 <353 <k—1 and all n such that kn4j5 >
O, we have

Ul iy ket =

((k=Dn+ )30 _o(=1)*"((k=Dn+r+j5)"
(b= Dnetrakfy (k1)

S—rTr



Closed form 2

Starting with the formula for U?{”‘( e

can use the recursions to prove:

1 B}k knts WV

Forall 0 <3 <k—1 and all n such that kén4j5 >
0, we have

Ul b)) kknty —

(k= Dn+ )1 Zo(=1)" "1 +r)"
(k= Dombrabg) (knty 4 1)

n—s—r



Karlsson-Minton hypergeometric series

A hypergeometric series is defined by

qu al, az, ..., Clzp;z — i (C’Jl)k---(ap)k Zk
b1, bo, ..., bq kzok!(bl)kz“'(bq)k

A Karlsson-Minton hypergeometric series is de-
fined by

O

Cl1, €2, ..., Ct41 . (Cl)k---(Ct—l—l)k k
F z| = E 4
+1L¢ ’
t bl, ceey bt =0 k!(bl)k---(bt)k




Gasper proved that

w, Z, b]_ _I_ dl)
t+2Fi+1 r+c+1, by,

F(1tate)l (1—w) (bi—x)q,
F(1+z—w)l(c+1) *H=1" (b;)qg,

L Z_b]_7

F, —
X251 z—w, z—b1 —dq,

bt +dp | _
bt

z — by
Z—bt—dt

where z = 1 4+ x, w,c,z,b; € C, d; € N, and

R(c—w) >n—1.

|



A Simple Example

Let Rn(z) = AP (2) = 212} Ry pas. Let

Nopyqia” — sz 4+ (2n — s+ 1)z

and

Mopngo 2’ = (s+1)z"+ (2n—s+ 1):1:8_"1.

Then Kitaev and Remmel proved the following.

The polynomials Ry (x),>1 satisfy the following
recursions.

1. Ri(z) =1,
2. Ropt1(x) = Aopy1(Rop(x)), and

3. Ropto(x) = Mopqo(Ropt1(2)).



T he basic recursions

This fact gave rise to the following recursions
for Rs)n(x).

Reopt1 = (8s+1)Rep10n+2n—s+1)Rso,
Rs,Qn—I—Q = (s+ 1)Rs,2n—|—1 + (2n —s+ 2)R5—1,2n—|—1

It was through these recursions that Kitaev and
Remmel were able to show that

Rion = (Z’)z(n!)Q, and

1 2
Rrzntr = 751() ((r+ 12



The g-recursions

To prove g-analogues of the results, let

A%n—l—l cr® — [s]qa:‘s_l +¢° [2n — s+ 1]q:133

and

Mo 2® = [s+1],2°+¢* T [2n — s + 1] 2T,

Define R} (z),>1 = >"_q Ré n2®, via the follow-
iNng recursions.

1. Rli(z,q) =1,
2. Rgn_l_l(a:,q) = A%n+1(R%n(x))' and

q _ ¢ q
3. Ropqo(z,q) =15, 1 5(Ry, 4 1(2)).



This fact gives rise to the following recursions
for the coefficients R, (z).

q — q q
Rs,Qn—I—l = [s+ 1]q Rs—|—1,2n + ¢ [2n — s + 1]q Rs,2n

q — q q
Rs,Qn—I—Q _ [S T 1]61 Rs,2n—|—1 T qs [2n — 5T 2]q Rs—1,2n—|

We can then show that the solution to these
recursions are

Ri,, = q(g)qu([n]q!)z, and
. B (2 2 2
Rpopy1 = [k‘l‘l]q[lﬂ}q ([n+1],D=.



A familliar permutation statistic, may

Given o € Sp, maj(o) = Y icDes(o) - Foata
showed that the maj statistic satisfies some
simple recursions. That is, for any permuta-
tionr=m...7m_1 € S,-1, we label the spaces
where we can insert n into = to get a permu-
tation in S, as follows.

1. Label the space following 7,,_1 with O.

2. Next label the spaces that lie between de-
scents 7; > 7,41 from right to left with the
integers 1,...,des(7).

3. Finally label the remaining spaces from left
to right with the integers des(7) +1,...,n.



Example: If r=392854167, then spaces
are labeled as follows:

Then Foata proved that if (1) is the result of
inserting n into the space labeled ¢, then for all

1 € {0,...,n},

maj(T(i)) =i+ maj(r).



The natural g-statistic

We can use a similar labeling procedure to
define a statistic Emaj such that Ri(x,q) =

Emaj(c)..des
Zaean maj(a)x esE

Look at the operators that produced the re-
cursions.

A%n—l—l x® — [:s]qglcs_1 +q¢°[2n — s+ 1], x°

and

Mo 2 — [s+1],2°+¢* T [2n — s + 1] 25T

Example: 0 =3 9285416 7. Then the
E-canonical labeling of o is



A more general example

et us examine the g-analogue of the polyno-
mials Ugc1pyy kn(®). For j=0,...,k—2let

A%n_H x° — [s]qazs_l + ¢°[kn + j — s]qx®
and

Mas i 2® = [(k— Dn 4k + s — 1]4a°

+q(k_1)”+k+s_1[n — s+ 1]z5t1L. Define:

U«?(lk)},k,l(w, q) =1,

. q _
2. For y =1,...,k—1, U{(lk)}’k’kn_l_j(x,q) —

kn—l—]( (1k)},k,l~m—|—j—1<w q)), and

?(1k)}kk ulTa) =
Mtk U1k} k-1 (@)



The g-formulas

S

i U{?(lk)}kkn—k]( q) = Ry 0 {(1k)}kkn—|—]

then

Forall0 < j <k—1and all n such that kn+4j5 >
O, we have

U ,
{(1k)},k,k¢n—|—]
[(k —1)n+ 4],

S (1)) )
=0

(k= Dm+j+r hntj+1
| SR

r q §—T

X [(k=Dn+j+rly

S Loy g3 () v () sthnet)

(k—1n4+j+r kn+5+1
| P

r g-nm—Ss—1 g

x[1+r];



Some differences in the ¢-case

When g =1 we know that

U?(lk)} k kn—l—j = ((k—1)n —|-j)| (k= Dn + §)"

and we used these facts to prove the formulas
hold.

0
U{ 134,32 d ®

0
Uiz 33 @

o)
Us e ® ?
A
Uisss [ o é@/ o
e

0
U{13},3,7 [ o o




Some differences in the ¢-case

In the general g-case, we need more. U{_é’lg)} kokn+i

n—+1,q
and U{(lk).}#,]?nﬂ make sense but must be O
by our definitions.

0
U{13},3,2 g ®
0
Ui 33 ? ? ®
0
Ur13 34 o
0
u13},3,5 o () ®
0
ECRCE
0
U{13},3,7 [ [ [ [

This can be proven with the following Theo-
rem.



A necessary T heorem

For all positive integers k,n, 3, 21,...,2n and any
function 0(r) where kn+j > 0, 0 < z; < (k —
1)n+34, and 6(r+1) =6(r) — (n —r),

n—+1 n
S (=) T [z + 1],
r=0 1=1

x[ kn+j7+1

(k_ 1)n+j7767n+1_7j =0

q



An alternate formula

It has also been shown that

S = r—s (T .
by eknts = 2o DT ) entg =r)1Snq1 1y

where S, ;. is the Stirling number of the second
Kind, i.e. S5, is the number of set partitions
of {1,...,n} into k parts.

1 . 87q —_—
Conjecture: U{(lk)},k,kn—|—j —

S (— ]_)T—Sq(n‘l‘Ql—S)-I-?“((k—1)n—|—j)_ (n—£—1>+n8 [’r} q

S
X [kn+j —r]S) 1 41 , where S is the ¢-
Stirling number of the second kind that defined
by the following recursion.

5870= 1,5,27,{:0 if k<0 ork>n, and,

Spk = Sn_1k-1 T [klgSy 1, FO<Sk<n



Unanswered Questions

. General Subset Problem

. PQ-Analogues of U-Coefficients

. Consider Matching where |7| > 2

. Find a Combinatorial Interpretation of the
Closed Forms

. Wilf Equivalence Classes



