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Peter, you are very wise to go into discrete mathemat-
ics. The real number line was invented by dead white
males.

Maciej ZworsKi



1. Consecutive Pattern-Avoiding Permutations

Let &, be the group of permutations on n symbols. Write 7 € G,
as

T = (7T177T27"'77Tn)

where the 7, are integers

A permutation m € S, is 123-avoiding if there is no integer k
with 1 <k <n—2 and m; < mp41 < Tp42

Let a, be the number of such permutations in &,

Problem Find the asymptotics of oy, as n — oo.



Solution The asymptotic formula

Ozn(123)_ n+1 1 n—1
=g exp T —I—C’)(A_l)

holds where

B V3
~ 2n(k41/3)

Ak

Remark The leading asymptotics were obtained earlier by Elizalde
and Noy (2003)

We'll discuss the analysis of 123-avoiding permutations via the
spectral theory of integral operators. The method applies to a
wide range of counting problems involving consecutive pattern-
avoiding permutations, and gives detailed asymptotic expansions
in some cases of interest.



2. An Integral Operator Related to the Counting Problem

There is a one-to-one correspondence between permutations of
Sy and simplices in the standard triangulation of [0, 1]"

“Forbidden” permutations correspond to simplices whose points
r = (z1,...,zn) in [0,1]" have x; < x;41 < zj4o for some j,
1 <9< n—-2.

“Allowed"” (i.e., 123-avoiding) permutations in &, correspond to
simplices S in [0, 1]™ for which no such points occur.

We will use this observation to pose the counting problem in
terms of an integral operator acting on functions on [0, 1]2.



For z € [0,1]3, let

O if x1 <z < 1x3

X3(‘CE17 L, CU3) —
1 otherwise

and for n > 4 let
n—2

Xn(xla“'axn) — X3(33j,33j_|_1,$j_|_2)
j=1

Thus xn is a characteristic function for simplices in [0, 1]™ corre-
sponding to allowed permutations.

It follows that
an
r)der = —
/[0,1]" xn(2) n!



The Integral Operator
Define a linear mapping from functions on [0, 1]2 into themselves
by

1
(TH)(@r,w2) = [ xalt a1,22) f(t,01) dt

The mapping T is positivity preserving, i.e., if f(x) > 0 for all x,
then (T'f)(x) > 0 for all x as well.

We will see that T (usually) has a positive eigenvalue of greatest
modulus that determines the leading asymptotics of a, as n —

.



Let 1 denote the function on [0, 1] with constant value 1.

Note that

1
T(W() = [ xa(t,ee2)dh

. 1 1
T<(1)(x) = /o X3(t2,331,562)/0 x3(t1,to, 1) dty dto

SO, inductively

TE(1)(z1,22) =

1
/o x3(t1,t2,t3)x3(t2,t3,ta) ... x3(tk, x1,x2) dty - - - dty



Hence

(Ij]j|_+22)| e /[O 1]2(Tk]_)(£131, ;132) dxl d£132

Recall inner product for functions on [0, 1]2:

(f,9) = /[o 1 f(z1,2)g9(x1, x2) dwy dxo

Then

o2y = (BT



Generalization

Suppose
e SCG,,41 is a consecutive pattern of length (m + 1)
o an(S) is the number of S-avoiding permutations in &,

® xs(x1,...,xy41) is the characteristic function of simplices in
[0, 1]7”‘"1 corresponding to allowed permutations in 6,44



Define:

(Tsf)(@1,...,2m) =

1
/OXS(tvxla' .. ,Qfm)f(t,x]_,. .- 733m—1)dx1 T dajm

T hen:

ak—l—m(s) — <]_, T§1>

The behavior of powers T* is governed by the eigenvalues of T'.
T he largest eigenvalue of T' determines the asymptotics of «y.



3. The Perron-Frobenius and Krein-Rutman Theorem

For a real mxm matrix A with eigenvalues \1,..., A\m, the spectral
radius of A is

r(A) = sup |\l
1<i<m

The Spectral Radius



Theorem (Perron-Frobenius) Suppose that A is a nonzero ma-
trix with nonnegative entries. Let p =r(A). Either:

(a) p =0 and A is nilpotent, or

(b) p > 0, and p is an eigenvalue of A with nonzero, nonnegative
eigenvector v. In this case, all of the eigenvalues \ with |\| = p
take the form X = (p where ¢ is a root of unity.

Note that A* also satisfies the hypothesis so, in the second case,
A*™ has eigenvalue p and a nonnegative eigenvector w as well.



Three Cases of Perron-Frobenius

p(A)=0 p(A) nonzero p(A) nonzero



Let
m
(u,v) = ) v,
1=1

and

1=(1,1,...,1)

Suppose A is a nonzero matrix with nonnegative entries. Denote
by p the spectral radius of A.

Consider

' — <1, An1>



Either:
(a)There isan N so r, =0 for n > N, or
(b) r, > 0 for all n and

lim <7“}/n> =p

n—oo

In the second case, if A = p is the only eigenvalue of modulus p,
then

m = cp" + O(p})
where p; < p and
c = (w, 1){1,v)

Here Av = pv and A*w = pw. We normalize so (v,w) =1



Hints for the proof: If

A’Uk — )\k’l)k, A*wk — A_kwk

where
(wj,vg) = 9k
then
m
k=1
SO

Anl Z )\n wk, 1 Uk>
The leading terms correspond to those Ap of maximum modulus

These terms sum to p"f(n) where f is strictly positive and peri-
odic in n



Linear Operators

Definition A linear operator 1T° on functions is
positivity preserving if T f(x) > 0 whenever f(x) > 0 and positiv-
ity improving if (T'f)(xz) > O strictly if f(z) > 0 and f is nonzero.

Theorem (Krein-Rutman 1948) IfT is positivity preserving and
compact, then either:

(a) T has zero spectral radius, or

(b) T has nonzero spectral radius p, and there is a nonzero
nonnegative function v so that Tv = pv.

In the second case, if T is positivity improving, then p is the
unique eigenvalue of maximal modulus, and all other eigenvalues
of T satisfy |\ < p1 for 0 < p1 < p.



4. Asymptotics

Recall that for a pattern S of length (m + 1),

On n—m
= (1,78 ™1)

p(S) is the spectral radius of Tg

Theorem Suppose that S is a nonempty pattern. Then

p(8) = lim_(an(S)/n))/"

Either p(S) = 0 or p(S) > 0!

Later, we will describe a combinatorial condition which guaran-
tees that p(Tg) > 0.



Example 1 Suppose S = {132,231}. An S-avoiding permutation
has “no peaks” and one can show that an(S) = 27"~1. Thus
p(S) = 0.

Example 2 Suppose that S = {123,321}. Then an(S) = 2E,
where E, is the nth Euler number. Tg¢ has eigenvalues +2/7 of
maximum modulus and the spectrum is invariant under A — —A\.
There is a complete asymptotic expansion for a(S)

Example 3 Suppose that S = {123}. Then Tg has a maxi-
mal positive eigenvalue 3v/3/(27) and all other eigenvalues are
real and of smaller modulus. There is a complete asymptotic
expansion for an(S):

_ V3
- 2n(k+1/3)

Ak



There is an infinite graph Hg associated with the pattern S which
is essentially an infinite de Brujin graph with certain edges re-
moved. For patterns of length m + 1:

e Its vertices are interior points of simplices of the unit m-cube

e Two vertices x and y are connected if 1 #= ym, Tiy1 = Yj,
and x1xo - - xmym IS order equivalent to an allowed permuta-
tion

Theorem p(S) > 0 if and only if Hg has a directed cycle

We can also give conditions on Hg under which p(S) the unique
eigenvalue of maximum modulus



5. Further Remarks

If S is a consecutive pattern of length m + 1 we have

ap4m(S) _ <1 Tk1>
(k+m)! ’
It follows that

o0 n
Zn=0an(s)% —

1+ 4242 (1, (1 - 2Tg) " 1Tg1)

Thus the radius of convergence of the generating function is
determined by the spectrum of Tg.



Krein-Rutman’'s theorems imply that

T = p(S)U™ + V™

where U is a permutation matrix and V is “negligible
Question How is the permutation related to S7

Question What can be said about a,(S) when p(S) = 07



