Counting Consecutive Pattern-Avoiding Permutations with Perron and Frobenius

Richard Ehrenborg, University of Kentucky Sergey Kitaev, Reykjavik University Peter Perry, University of Kentucky

Contents

- 1. Consecutive Pattern-Avoiding Permutations
- 2. An Integral Operator Related to the Counting Problem
- 3. The Perron-Frobenius and Krein-Rutman Theorems
- 4. Asymptotics

Peter, you are very wise to go into discrete mathematics. The real number line was invented by dead white males.

Maciej Zworski

1. Consecutive Pattern-Avoiding Permutations

Let \mathfrak{S}_n be the group of permutations on n symbols. Write $\pi \in \mathfrak{S}_n$ as

$$\pi = (\pi_1, \pi_2, \ldots, \pi_n)$$

where the π_i are integers

A permutation $\pi \in \mathfrak{S}_n$ is 123-*avoiding* if there is no integer kwith $1 \le k \le n-2$ and $\pi_k < \pi_{k+1} < \pi_{k+2}$

Let α_n be the number of such permutations in \mathfrak{S}_n

Problem Find the asymptotics of α_n as $n \to \infty$.

Solution The asymptotic formula

$$\frac{\alpha_n(123)}{n!} = \lambda_0^{n+1} \exp\left(\frac{1}{2\lambda_0}\right) + \mathcal{O}\left(\lambda_{-1}^{n-1}\right)$$

holds where

$$\lambda_k = \frac{\sqrt{3}}{2\pi(k+1/3)}$$

Remark The leading asymptotics were obtained earlier by Elizalde and Noy (2003)

We'll discuss the analysis of 123-avoiding permutations via the spectral theory of integral operators. The method applies to a wide range of counting problems involving consecutive pattern-avoiding permutations, and gives detailed asymptotic expansions in some cases of interest.

2. An Integral Operator Related to the Counting Problem

There is a one-to-one correspondence between permutations of \mathfrak{S}_n and simplices in the standard triangulation of $[0,1]^n$

"Forbidden" permutations correspond to simplices whose points $x = (x_1, \ldots, x_n)$ in $[0, 1]^n$ have $x_j < x_{j+1} < x_{j+2}$ for some j, $1 \le j \le n-2$.

"Allowed" (i.e., 123-avoiding) permutations in \mathfrak{S}_n correspond to simplices S in $[0,1]^n$ for which no such points occur.

We will use this observation to pose the counting problem in terms of an integral operator acting on functions on $[0, 1]^2$.

For $x \in [0, 1]^3$, let

$$\chi_{3}(x_{1}, x_{2}, x_{3}) = \begin{cases} 0 & \text{if } x_{1} \leq x_{2} \leq x_{3} \\ 1 & \text{otherwise} \end{cases}$$

and for $n \geq 4$ let

$$\chi_n(x_1,\ldots,x_n) = \prod_{j=1}^{n-2} \chi_3(x_j,x_{j+1},x_{j+2})$$

Thus χ_n is a characteristic function for simplices in $[0, 1]^n$ corresponding to allowed permutations.

It follows that

$$\int_{[0,1]^n} \chi_n(x) \, dx = \frac{\alpha_n}{n!}$$

The Integral Operator

Define a linear mapping from functions on $[0, 1]^2$ into themselves by

$$(Tf)(x_1, x_2) = \int_0^1 \chi_3(t, x_1, x_2) f(t, x_1) dt$$

The mapping T is *positivity preserving*, i.e., if $f(x) \ge 0$ for all x, then $(Tf)(x) \ge 0$ for all x as well.

We will see that T (usually) has a positive eigenvalue of greatest modulus that determines the leading asymptotics of α_n as $n \rightarrow \infty$.

Let 1 denote the function on $[0,1]^2$ with constant value 1.

Note that

$$T(1)(x) = \int_0^1 \chi_3(t_1, x_1, x_2) dt_1$$

$$T^2(1)(x) = \int_0^1 \chi_3(t_2, x_1, x_2) \int_0^1 \chi_3(t_1, t_2, x_1) dt_1 dt_2$$

so, inductively

$$T^{k}(1)(x_{1}, x_{2}) = \int_{0}^{1} \chi_{3}(t_{1}, t_{2}, t_{3}) \chi_{3}(t_{2}, t_{3}, t_{4}) \dots \chi_{3}(t_{k}, x_{1}, x_{2}) dt_{1} \cdots dt_{k}$$

Hence

$$\frac{\alpha_{k+2}}{(k+2)!} = \int_{[0,1]^2} (T^k \mathbf{1})(x_1, x_2) \, dx_1 \, dx_2$$

Recall inner product for functions on $[0, 1]^2$:

$$\langle f,g\rangle = \int_{[0,1]^2} f(x_1,x_2)g(x_1,x_2)\,dx_1\,dx_2$$

Then

$$\frac{\alpha_{k+2}}{(k+2)!} = \left\langle \mathbf{1}, T^k \mathbf{1} \right\rangle$$

Generalization

Suppose

- $S \subset \mathfrak{S}_{m+1}$ is a consecutive pattern of length (m+1)
- $\alpha_n(S)$ is the number of S-avoiding permutations in \mathfrak{S}_n
- $\chi_S(x_1, \ldots, x_{m+1})$ is the characteristic function of simplices in $[0, 1]^{m+1}$ corresponding to allowed permutations in \mathfrak{S}_{m+1}

Define:

$$(T_S f)(x_1, \dots, x_m) =$$
$$\int_0^1 \chi_S(t, x_1, \dots, x_m) f(t, x_1, \dots, x_{m-1}) dx_1 \cdots dx_m$$

Then:

$$\alpha_{k+m}(S) = \left\langle \mathbf{1}, T_S^k \mathbf{1} \right\rangle$$

The behavior of powers T^k is governed by the eigenvalues of T. The largest eigenvalue of T determines the asymptotics of α_k .

3. The Perron-Frobenius and Krein-Rutman Theorem

For a real $m \times m$ matrix A with eigenvalues $\lambda_1, \ldots, \lambda_m$, the *spectral* radius of A is

$$r(A) = \sup_{1 \le i \le m} |\lambda_i|.$$

The Spectral Radius

Theorem (Perron-Frobenius) Suppose that A is a nonzero matrix with nonnegative entries. Let $\rho = r(A)$. Either: (a) $\rho = 0$ and A is nilpotent, or (b) $\rho > 0$, and ρ is an eigenvalue of A with nonzero, nonnegative eigenvector v. In this case, all of the eigenvalues λ with $|\lambda| = \rho$ take the form $\lambda = \zeta \rho$ where ζ is a root of unity.

Note that A^* also satisfies the hypothesis so, in the second case, A^* has eigenvalue ρ and a nonnegative eigenvector w as well.

Three Cases of Perron-Frobenius

Let

$$\langle u, v \rangle = \sum_{i=1}^{m} \overline{u}_i v_j$$

and

$$1 = (1, 1, \ldots, 1)$$

Suppose A is a nonzero matrix with nonnegative entries. Denote by ρ the spectral radius of A.

Consider

$$r_n = \langle \mathbf{1}, A^n \mathbf{1} \rangle$$

Either: (a)There is an N so $r_n = 0$ for $n \ge N$, or (b) $r_n > 0$ for all n and

$$\lim_{n\to\infty} \left(r_n^{1/n} \right) = \rho$$

In the second case, if $\lambda = \rho$ is the only eigenvalue of modulus ρ , then

$$r_n = c\rho^n + \mathcal{O}(\rho_1^n)$$

where $\rho_1 < \rho$ and

 $c = \langle w, \mathbf{1} \rangle \langle \mathbf{1}, v \rangle$

Here $Av = \rho v$ and $A^*w = \rho w$. We normalize so $\langle v, w \rangle = 1$

Hints for the proof: If

$$Av_k = \lambda_k v_k, \quad A^* w_k = \overline{\lambda_k} w_k$$

where

$$\langle w_j, v_k \rangle = \delta_{jk}$$

then

$$A^n x = \sum_{k=1}^m \lambda_k^n \langle w_k, x \rangle v_k$$

SO

$$\langle \mathbf{1}, A^n \mathbf{1} \rangle = \sum_{k=1}^m \lambda_k^n \langle w_k, \mathbf{1} \rangle \langle \mathbf{1}, v_k \rangle$$

The leading terms correspond to those λ_k of maximum modulus

These terms sum to $\rho^n f(n)$ where f is strictly positive and periodic in n

Linear Operators

Definition A linear operator T on functions is positivity preserving if $Tf(x) \ge 0$ whenever $f(x) \ge 0$ and positivity improving if (Tf)(x) > 0 strictly if $f(x) \ge 0$ and f is nonzero.

Theorem (Krein-Rutman 1948) *If T is positivity preserving and compact, then either:*

(a) T has zero spectral radius, or

(b) T has nonzero spectral radius ρ , and there is a nonzero nonnegative function v so that $Tv = \rho v$.

In the second case, if T is positivity improving, then ρ is the unique eigenvalue of maximal modulus, and all other eigenvalues of T satisfy $|\lambda| \leq \rho_1$ for $0 \leq \rho_1 < \rho$.

4. Asymptotics

Recall that for a pattern S of length (m+1), $\frac{\alpha_n}{n!} = \langle {\bf 1}, T_S^{n-m} {\bf 1} \rangle$

 $\rho(S)$ is the spectral radius of T_S

Theorem Suppose that S is a nonempty pattern. Then $\rho(S) = \lim_{n \to \infty} (\alpha_n(S)/n!)^{1/n}$

Either $\rho(S) = 0$ or $\rho(S) > 0!$

Later, we will describe a combinatorial condition which guarantees that $\rho(T_S) > 0$. **Example 1** Suppose $S = \{132, 231\}$. An *S*-avoiding permutation has "no peaks" and one can show that $\alpha_n(S) = 2^{n-1}$. Thus $\rho(S) = 0$.

Example 2 Suppose that $S = \{123, 321\}$. Then $\alpha_n(S) = 2E_n$ where E_n is the *n*th Euler number. T_S has eigenvalues $\pm 2/\pi$ of maximum modulus and the spectrum is invariant under $\lambda \mapsto -\lambda$. There is a complete asymptotic expansion for $\alpha_n(S)$

Example 3 Suppose that $S = \{123\}$. Then T_S has a maximal positive eigenvalue $3\sqrt{3}/(2\pi)$ and all other eigenvalues are real and of smaller modulus. There is a complete asymptotic expansion for $\alpha_n(S)$:

$$\lambda_k = \frac{\sqrt{3}}{2\pi(k+1/3)}$$

There is an infinite graph H_S associated with the pattern S which is essentially an infinite de Brujin graph with certain edges removed. For patterns of length m + 1:

- Its vertices are interior points of simplices of the unit *m*-cube
- Two vertices x and y are connected if $x_1 \neq y_m$, $x_{j+1} = y_j$, and $x_1x_2 \cdots x_my_m$ is order equivalent to an allowed permutation

Theorem $\rho(S) > 0$ if and only if H_S has a directed cycle

We can also give conditions on H_S under which $\rho(S)$ the unique eigenvalue of maximum modulus

5. Further Remarks

If S is a consecutive pattern of length m+1 we have $\frac{\alpha_{k+m}(S)}{(k+m)!} = \left< 1, T^k 1 \right>$

It follows that

$$\sum_{n=0}^{\infty} \alpha_n(S) \frac{z^n}{n!} =$$

$$1 + \dots + z^m + z^{m+1} \left\langle 1, (I - zT_S)^{-1} T_S \mathbf{1} \right\rangle$$

Thus the radius of convergence of the generating function is determined by the spectrum of T_S .

Krein-Rutman's theorems imply that

$$T_S^n = \rho(S)U^n + V^n$$

where U is a permutation matrix and V is "negligible"

Question How is the permutation related to S?

Question What can be said about $\alpha_n(S)$ when $\rho(S) = 0$?